en   ru   uk  
 
 
Физиология растений и генетика 2017, том 49, № 6, 482-494, doi: https://doi.org/10.15407/frg2017.06.482

ПУТИ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ФОСФОРНОГО ПИТАНИЯ РАСТЕНИЙ

Грабчук С.Н., Михальская Л.Н., Швартау В.В.

  • Институт физиологии растений и генетики Национальной академии наук Украины, Киев

Фосфор — важный макроэлемент для растений, дефицит которого в почве существенно лимитирует получение высоких урожаев. Гомеостаз фосфора в растениях поддерживают сложные комплексные системы поглощения, транспортировки и ремобилизации ортофосфата. Сигнальные системы на уровне корня, стебля—корня базипетального и акропетального направления включают градиент Рі, изменения гормонального статуса, микроРНК, мРНК, сахара, координируют реакцию на дефицит Рі на уровне растения. Среди путей повышения эффективности использования фосфора (P-use efficiency — PUE) наиболее перспективными являются биотехнологические подходы. С помощью вектора превращения фосфита в фосфат созданы генетически модифицированные растения кукурузы, сои, хлопчатника, способные использовать фосфит в качестве удобрения. Результаты молекулярных исследований фосфорного питания культурных растений дали возможность создать генотипы растений и технологии их выращивания с высокими уровнями PUE, что существенно повышает экономическую эффективность растениеводства и снижает химическую нагрузку на агрофитоценозы.

Ключевые слова: phosphate nutrition, phosphite, orthophosphate

Физиология растений и генетика
2017, том 49, № 6, 482-494

Полный текст и дополнительные материалы

В свободном доступе: PDF  

Цитированная литература

1. Bary, A.A., Atambaeva, Sh.A. & Orazova, S.B. (2011). Micro RNK under stress in plants. Bulletin of the Kazakh National University.Biolohiia, 4(50), pp. 34-37 [in Russian].

2. Goncharova, Yu.K. & Harytonov, E.M. (2015). Genetic control of traits associated with the absorption of phosphorus in rice varieties (Oryza sativa L.). Vavilov Journal of Genetics and Breeding, 19(2), pp. 197-204 [in Russian].

3. Grabchuk SM, Schwartau VV Application of phosphite in phosphorus plant nutrition. Materials of XI Allukr. sci. pract. conf. "Biotechnology of the twenty-first century". Kyiv, p. 21.

4. Morgun, V.V., Shvartau, V.V. & Kiriziy, D.A. (2010). Physiological basis of the formation of high productivity of cereals. Fiziologiya i biokhimiya kult. Rastenij, 42(5), pp. 371-393 [in Russian].

5. Morgun, V.V. (Ed.) (2007). Application of plant physiology in wheat breeding. K: Lohos [in Russian].

6. Shvartau, V.V., Gulyaev, B.I. & Karlova, A.B. (2009). Features of the reaction of plants to phosphorus deficiency. Fiziologiya i biokhimiya kult. Rastenij, 41(3), pp. 208-220 [in Russian].

7. Shvartau, V.V., Zozulya, O.L., Mihalska, L.M. & Sanin O.Yu. (2016). Fusariosis of cultivated plants. K: Lohos [in Ukrainian].

8. Balyan, H.S., Gahlaut, V., & Kumar, A. Nitrogen and phosphorus use efficiencies in wheat: physiology, phenotyping, genetics, and breeding. Ed. J. Janick (2016). Plant breeding reviews, 40. Hoboken, NJ: John Wiley & Sons. https://doi.org/10.1002/9781119279723.ch4

9. Blair, M.W. Breeding approaches to increasing nutrient-use efficiency: examples from common beans. Ed Zed Rengel. (2013). Improving water and nutrient-use efficiency in food production systems. Hoboken, NJ: John Wiley & Sons. https://doi.org/10.1002/9781118517994.ch10

10. Bovill, W.D., Huang, C.Y. & McDonald G.K. (2013). Genetic approaches to enhancing phosphorus-use efficiency (PUE) in crops: challenges and directions. Crop. Pasture Sci., No. 64, pp. 179-198. https://doi.org/10.1071/CP13135

11. Bunemann, E., Oberson, A., & Frossard, E. (2011). Phosphorus in action — biological processes in soil phosphorus cycling. Soil Biology. Berlin Heidelberg: Springer-Verlag.26. (p. 483) https://doi.org/10.1007/978-3-642-15271-9

12. Dhillon, J., Torres, G., Driver, E., Figueiredo, B. & R. Raun W. (2017). World phosphorus use efficiency in cereal crops. Agr. J., 109(4), pp. 1670-1677. https://doi.org/10.2134/agronj2016.08.0483

13. Hammond J.P., Broadley M.R. & White P.J. (2004). Genetic responses to phosphorus deficiency. Ann. Bot., 94(3), pp. 323-332. https://doi.org/10.1093/aob/mch156

14. Hasan, Md. M., Hasan, Md. M., Teixeira da Silva J.A. & Licorresponding X. (2016). Regulation of phosphorus uptake and utilization: molecular advances to practical strategies. Cell. Mol. Biol. Lett., 21(7).

15. Hermans, C., Hammond, J.P., White, P.J. Verbruggen, N. (2006). How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci., No. 11(12), pp. 610-617.

16. Heuer S., Gaxiola R., Schilling R., Herrera-Estralla, L., Lopez-Arredondo, D., Wissuwa, M., Delhaize, E.& Rouached, H. (2017). Improving phosphorus use efficiency: a complex trait with emerging opportunities. Plant J., 90(5). pp. 868-885. https://doi.org/10.1111/tpj.13423

17. Lopez-Arredondo, D.L. & Herrera-Estrella, L. (2012). Engineering phosphorus metabolism in plants to produce a dual fertilization and weed control system. Nature Biotech., No. 30(9), pp. 889-895. https://doi.org/10.1038/nbt.2346

18. Lopez-Arredondo, D.L. & Herrera-Estrella, L. (2013). A novel dominant selectable system for the selection of transgenic plants under in vitro and greenhouse conditions based on phosphite metabolism. Plant Biotechnol. J., 11, pp. 516-525. https://doi.org/10.1111/pbi.12063

19. Lopez-Arredondo, D., Leyya-Gonzalez, M.A., Gonzalez-Morales, S.I., Lopez-Bucio, J & Herrera-Estrella, L. (2014). Phosphate nutrition: improving low-phosphate tolerance in crops. Annu. Rev. Plant Biol., No. 65, pp. 95-123. https://doi.org/10.1146/annurev-arplant-050213-035949

20. Lun F., Liu J., Ciais P., Nesme, T., Chang, J., Wang, R., Goll, D., Sardans, J., Penuelas, J. & Obersteiner, M. (2017). Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency. Earth System Science Data Discuss, pp. 1-45. doi: https://doi.org/10.5194/essd-2017—41, in review, 2017. https://doi.org/10.5194/essd-2017-41

21. Ma, X., Li, C. & Wang, M. (2015). Wheat NF-YA10 functions independently in salinity and drought stress. Bioengineered, 6:4, pp. 245-247. https://doi.org/10.1080/21655979.2015.1054085

22. McDonald, G., Bovill, W., Taylor, J. & Wheeler R. (2015). Responses to phosphorus among wheat genotypes. Crop. Pasture Sci., No. 66, pp. 430-444. https://doi.org/10.1071/CP14191

23. Moreta, D.E., Mathur, P.N., van Zonneveld, M., Amava, K.,Arango, J., Selvarai, M.G. & Dedicova, B. (2015). Current issues in cereal crop biodiversity. Adv. Biochem. Biotechnol., 147, pp. 1—35.

24. Nahampun, H.N., Lopez-Arredondo, D., Xu, X., Herrera-Estrella, L. & Wanq.K. (2016). Assessment of ptxD gene as an alternative selectable marker for Agrobacterium-mediated maize transformation. Plant Cell Rep., 35(5), pp.1121-1132. https://doi.org/10.1007/s00299-016-1942-x

25. Neset, T.-S.S., Cordell, D. & Andersson, L. (2013). The flow of phosphorus in food production and consumption systems. In: Improving water and nutrient-use efficiency in food production systems. Ed. Zed Rengel. Hoboken, NJ: John Wiley & Sons, p. 79-91. https://doi.org/10.1002/9781118517994.ch5

26.Neto, A.P., Favarin, J.L., Hammond, J.P. (2016). Analysis of phosphorus use efficiency traits in Coffea genotynes reveals Coffea arabica and Coffea canephora have contrasting phosphorus uptale and utilization efficiencies. Front. Plant Sci., No 7 (408).

27. Nisan, A., Khan, S.U. & Shah A.H. (2016). Screening and evaluation of wheat germplasm for phosphorus use efficiency. Iran J. Sci. Technol. Trans. Sci., 40, pp. 201-207. https://doi.org/10.1007/s40995-016-0085-9

28. Poirier, Y. & Jung, J.-Y. Phosphate transporters. Ed. W.C. Plaxton, H. Lambers. (2015). Annual Plant Reviews. Phosphorus metabolism in plants. Hoboken, NJ: John Wiley & Sons, 48, pp. 125—158. https://doi.org/10.1002/9781118958841.ch5

29. Qu, B., He, X., Wang, J., Zhao, Y., Teng, W., Shao, A., Zhao,X., Ma, W., Wang, J., Li, B., Li, Z. & Tong, Y. (2015). Wheat CCAAT box-binding transcription factor increases the grain yield of wheat with less fertilizer input. Plant Physiol., 167(2), pp. 411-423. https://doi.org/10.1104/pp.114.246959

30. Quraishi, U.M., Abrouk, M., Murat, F., Pont, C., Foucrier, S., Desmaizieres, G., Confolent, C., Riviere, N., Charmet, G., Paux, F., Muriqneux, A., Guerreiro, L., Lafarge, S., Le Gouis, J., Feuillet, C. & Salse, J. (2011). Cross-genome map based dissection of a nitrogen use efficiency ortho-metaQTL in bread wheat unravels concerted cereal genome evolution. Plant J., No. 65, pp. 745-756. https://doi.org/10.1111/j.1365-313X.2010.04461.x

31. Raghothama, K.G. & Karthikeyan, A.S. (2005). Phosphate acquisition. Plant Soil., 274:37. https://doi.org/10.1007/s11104-004-2005-6

32. Ryan, P.R., Liao M., Delhaize, E., Rebetzke, J.G., Weligama,C., Spielmeyer, W. & James, A.R. (2015). Early vigour improves phosphate uptake in wheat. J. Exp. Bot., 66(22), pp. 7089-7100. https://doi.org/10.1093/jxb/erv403

33. Shabnam, R. & Iqbal, M.T. (2016). Phosphorus use efficiency by wheat plants that grown in an acidic soil. Brazillian Journal of Science and Technology, 3:18. doi: https://doi.org/10.1186/s40552-016—0030—7. https://doi.org/10.1186/s40552-016-0030-7

34. Smith, A.P., Fontenot, E.B., Zahraeifard, S. & DiTusa S.F. (2015). Molecular components that drive phosphorus remobilisation during leaf senescence. In ed. W.C. Plaxton, H. Lambers. Annual Plant Reviews. Phosphorus metabolism in plants. Hoboken, NJ: John Wiley & Sons, 48, pp. 159-186. https://doi.org/10.1002/9781118958841.ch6

35. Suzuki, M., Takahashi, M., Tsukamoto, T., Watanabe, S., Matsuhasi, S., Yazaki, J., Kishimoto, N., Kikuchi, S., Nakanishi, H., Mori, S. & Nishizawa, NK. (2006). Biosynthesis and secretion of mugineic acid family photosiderophores in zinc-deficient barley. Plant J., 48(1), pp. 85-97. https://doi.org/10.1111/j.1365-313X.2006.02853.x

36. Tian, J. & Liao, H. (2015). The role of intracellular and secreted purple acid phosphatases in plant phosphorus scavenging and recycling. In: W.C. Plaxton, H. Lambers, editors. Annual Plant Reviews. Phosphorus metabolism in plants. Hoboken, NJ: John Wiley & Sons, 48, pp. 265-288. https://doi.org/10.1002/9781118958841.ch10

37. Van de Wiel, C.C.M., van der Linden, C.G. & Scholten O.E. (2016). Improving phosphorus use efficiency in agriculture: opportunities for breeding. Euphytica, 207(1), pp. 1-22. https://doi.org/10.1007/s10681-015-1572-3

38. White, A.K. & Metcalf, W.W. (2007). Microbial metabolism of reduced phosphorus compounds. Annu. Rev. Microbiol., No. 61, pp. 379-400. https://doi.org/10.1146/annurev.micro.61.080706.093357

39. White, P.J.& Veneklaas, E.J. (2012). Nature and nurture: the importance of seed phosphorus content. Plant Soil, No. 357, pp. 1-8. https://doi.org/10.1007/s11104-012-1128-4

40. Wu, H., Gao, L., Yuan, Z. & Wang, S. (2016). Life cycle assessment of phosphorus use efficiency in crop production system of three crops in Chaohu Watershed, China. Journal of Cleaner Production, 139, pp. 1298-1307. https://doi.org/10.1016/j.jclepro.2016.08.137

41. Yaseen, M., Aziz, M.Z., Manzoor, A. & Naweed, M. (2017). Promoting growth, yield and phosphorus use efficiency of crops in maize-wheat cropping system by using polymer coated diammonium phosphate. Communications in Soil Science and Plant Analysis. (pp. 646-655). https://doi.org/10.1080/00103624.2017.1282510

42. Yan, H.M., Bkackwell, M., McGrath, S. & George, T.S. (2016). Morphological responses of wheat (Triticum aestivum L.) roots to phosphorus supply in two contrasting soils. Journal of Agricultural Science, 154, pp.9-108. https://doi.org/10.1017/S0021859615000702

43. Yuan, Y., Guo, K. & Dong B. (2016). A study on phosphorus use efficiency of wheat. Asian Agricult. Res., 8(5)., pp.80-87.

44. Zhang, H. & Wang, H. (2014). QTL mapping for traits related to P-deficient tolerance using three related RIL populations in wheat. Euphytica, 203(3), pp. 505-520. https://doi.org/10.1007/s10681-014-1248-4

45. Zhang, Z., Liao, H. & Lucas, W.J.(2014). Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants .J. Integr. Plant Biol., 56, pp. 192-220. https://doi.org/10.1111/jipb.12163