Физиология растений и генетика 2017, том 49, № 6, 463-481, doi: https://doi.org/10.15407/frg2017.06.463

РОЛЬ СИГНАЛЬНЫХ ПОСРЕДНИКОВ И СТРЕССОВЫХ ГОРМОНОВ В РЕГУЛЯЦИИ АНТИОКСИДАНТНОЙ СИСТЕМЫ РАСТЕНИЙ

Колупаев Ю.Е., Карпец Ю.В.

  • Харьковский национальный аграрный университет им. В.В. Докучаева 62483 Харьков, п/о Докучаевское-2
  • Харьковский национальный университет им. В.Н. Каразина 61022, Харьков, пл. Свободы, 4

Рассмотрены механизмы регуляции состояния антиоксидантной системы (АОС) растений с участием сигнальных посредников (пероксида водорода, ионов кальция, оксида азота, сероводорода). Отмечено, что влияние активных форм кислорода (АФК) на АОС может быть как результатом окислительной модификации белков, участвующих в трансдукции клеточных сигналов, так и следствием повреждения ими отдельных компонентов АОС, приводящего в конечном итоге к формированию АФК-сигнала и изменению экспрессии генов, причастных к ан­тиоксидантной защите. Оксид азота в зависимости от характера окислительной модификации может непосредственно вызывать как повышение, так и понижение активности антиоксидантных ферментов. В то же время под влиянием NO активизируются компоненты сигнальной сети, участвующие в регуляции экспрессии генов антиоксидантных ферментов. Прямая модификация функциональных групп белков (серосодержащих, металлсодержащих) может быть основой влияния сероводорода на компоненты АОС. Установлено, что действие H2S на активность антиоксидантных ферментов зависит и от других компонентов сигнальной сети. В процессах индуцирования АОС фитогормонами (жасмоновой и салициловой кислотами, брассиностероидами) принимают участие ключевые сигнальные посредники — АФК, оксид азота, ионы кальция.

Ключевые слова: антиоксидантная система, сигнальные посредники, активные формы кислорода, оксид азота, кальций, сероводород, стрессовые фитогормоны

Физиология растений и генетика
2017, том 49, № 6, 463-481

Полный текст и дополнительные материалы

В свободном доступе: PDF  

Цитированная литература

1. Karpets, Yu.V., Kolupaev, Yu.E. & Kosakovskaya, I.V. (2016). Nitric oxide and hydrogen peroxide as signal intermediaries when inducing the heat resistance of wheat seedlings by exogenous jasmonic and salicylic acids. Fisiol. rast. genet., 48(2), pp. 158-166 [in Russian].

2. Karpets, Yu.V., Kolupaev,Yu.E., Lugovaya, A.A. & Oboznyiy, A.I. (2014). Influence of exogenous jasmonic acid on the pro-/antioxidant system of wheat coleoptiles in connection with resistance to hyperthermia. Fiziol. rast., 61(3), pp. 367-375 [in Russian].

3. Karpets, Yu.V. & Kolupaev,Yu.E. (2017). Functional interaction of nitric oxide with reactive oxygen species and calcium ions during the formation of adaptive reactions of plants. Vіsnyk Harkіvskogo natsіonalnogo unіversitetu. Biolohiia, Iss. 2 (41), pp. 6-31 [in Russian].

4. Karpets, Yu.V. (2017). The role of calcium ions and reactive oxygen species in inducing antioxidant enzymes and heat resistance of plant cells by the nitric oxide donor. Vіsnyk Harkіvskogo natsіonalnogo unіversitetu. Biolohiia, Iss. 3 (42), pp. 52-61 [in Russian].

5. Kolupaev, Yu.E., Akinina, G.E. & Mokrousov, A.V. (2005).Induction of heat resistance of wheat coleoptiles with calcium ions and its relation to oxidative stress. Fiziol. rast., 52(2), pp. 227-232 [in Russian].

6. Kolupaev, Yu.E. (2016). Antioxidants of the plant cell, their role in ROS signaling and plant resistance. Uspehi sovremennoy biologii, 136(2), pp. 181-198 [in Russian].

7. Kolupaev, Yu.E., Vayner, A.A. & Yastreb, T.O. (2014). Reactive oxygen species and calcium ions in the implementation of the stress-protective effect of brassinosteroids on plant cells. Prikl. biokhimiya i mikrobiologiya, 50(6), pp. 593-598, pp. 593-598 [in Russian].

8. Kolupaev,Yu.E. & Karpets, Yu.V. (2014). Reactive oxygen species and calcium ions in the implementation of the stress-protective effect of brassinosteroids on plant cells. Ukr. Biochem. J., 86(4), pp. 18-35[in Russian]. https://doi.org/10.15407/ubj86.04.018

9. Kolupaev,Yu.E., Karpets, Yu.V. & Oboznyiy, A.I. (2011). Antioxidant system of plants: participation in cell signaling and adaptation to the action of stressors. Vіsnyk Harkіvskogo natsіonalnogo unіversitetu. Biologiya. Iss. 1(22), pp. 6-34 [in Russian].

10. Kolupaev,Yu.E. & Karpets, Yu.V. (2010). Formation of adaptive responses of plants to the action of abiotic stressors. Kiev: Osnova [in Russian].

11. Kolupaev, Yu.E., Firsova, E.N., Yastreb, T.O. & Lugovaya, A.A. (2017). Involvement of calcium ions and reactive oxygen species in inducing antioxidant enzymes and heat resistance of plant cells by hydrogen sulfide donor. Prikl. biokhimiya i mikrobiologiya, 53(5), pp. 502-509 [in Russian].

13. Kolupaev, Yu.E., Yastreb, T.O., Shvydenko, N.V.& Karpets, Yu.V. (2012). Induction of heat resistance of wheat coleoptiles by salicylic and succinic acids: the connection of effects with the formation and neutralization of reactive oxygen species. Prikl. biokhimiya i mikrobiologiya, 48(5), pp. 550-556 [in Russian]. https://doi.org/10.1134/S0003683812050055

14. Kreslavskiy, V.D., Los, D.A., Allahverdyev, S.I. & Kuznetsov, Vl.V. (2012). Signaling role of reactive oxygen species under stress in plants. Fiziol. rast., 59(2), pp. 163-178 [in Russian]. https://doi.org/10.1134/S1021443712020057

15. Maksimov, I.V., Sorokan, A.V. & Cherepanova, E.A. (2011). Effect of salicylic and jasmonic acids on the components of the pro / antioxidant system in potato plants during blight. Fiziol. rast., 58(4), pp. 243-251 [in Russian].

16. Ostapchenko, L.I., Sinelnik, T.B. & Kompanets, I.V. (2016). Biological membranes and bases of intracellular signaling. Theoretical aspects. K.: VPTS "Kiyivskiy universytet" [in Ukrainian].

17. Pradedova, E.V., Isheeva, O.D. & Salyaev, R.K. (2011). Classification of the antioxidant defense system as the basis for a rational organization of the experimental study of oxidative stress in plants. Fiziol. rast., 58(2)., pp. 177-185 [in Russian].

18. Pradedova, E.V., Nimaeva, O.D. & Salyaev, R.K. (2017). Redox processes in biological systems. Fiziol. rast., 64(6)., pp. 433-455 [in Russian]. https://doi.org/10.1134/S1021443717050107

19. Radyukina, N.L., Toayma, V.I.M. & Zarypova, N.R. (2012). The participation of low molecular weight antioxidants in the cross-adaptation of medicinal plants to the sequential action of UV-B irradiation and salinization. Fiziol. rast., 59(1)., pp. 80-88 [in Russian].

20. Cherenkevich, S.N., Martynovych, G.G. & Martynovych, I.V. (2013). Redox regulation of cellular activity: concepts and mechanisms. Vestsi NAN Belarusi. Biyalogiya, No. 1, pp. 92-108 [in Russian].

21. Chzhan, Sh., Van, M.I. & Hu, L.Ya. (2010). Hydrogen sulfide stimulates the germination of wheat seeds under osmotic stress. Fiziol. rast., 57(4)., pp. 571-579 [in Russian].

22. Yastreb, T.O., Kolupaev, Yu.E., Lugovaya, A.A. & Dmitriev, A.P. (2016). The content of osmolytes and flavonoids in plants of Arabidopsis thaliana, defective in jasmonate signaling, under salt stress. Prikl. biokhimiya i mikrobiologiya, 52(2), pp. 223-229 [in Russian]. https://doi.org/10.1134/S0003683816020186

23. Yastreb, T.O., Kolupaev, Yu.E. & Shvidenko, N.V. (2015). Reaction of Arabidopsis thaliana plants defective in jasmonate signaling to salt stress. Prikl. biokhimiya i mikrobiologiya, 51(4), pp. 412-416 [in Russian].

24. Alavi, S.M.N., Arvin, M.J. & Kalantari, K.M. (2014). Salicylic acid and nitric oxide alleviate osmotic stress in wheat (Triticum aestivum L.) seedlings. J.Plant Interact., 9, pp. 683-688. https://doi.org/10.1080/17429145.2014.900120

25. Arora, D. & Bhatla, S.C. (2015). Nitric oxide triggers a concentration-dependent differential modulation of superoxide dismutase (FeSOD and Cu/ZnSOD) activity in sunflower seedling roots and cotyledons as an early and long. Plant Signal. Behav. https://doi.org/10.1080/15592324.2015.1071753

26. Arora, D., Jain, P., Singh, N., Kaur, H. & Bhatla, S.C. (2015). Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants. Free Radical Res. https://doi.org/10.3109/10715762.2015.1118473

27. Astier, J. & Lindermayr, C. (2012). Nitric oxide-dependent posttranslational modification in plants: an update. Int. J. Mol. Sci., 13, pp. 15193-15208. https://doi.org/10.3390/ijms131115193

28. Bai, X., Yang, L., Tian, M., Chen, J., Shi, J., Yang, Y. & Hu, X. (2011). Nitric oxide enhances desiccation tolerance of recalcitrant Antiaris toxicaria seeds via protein S-nitrosylation and carbonylation. PLoS One, 6(6): e20714. https://doi.org/10.1371/journal.pone.0020714

29. Bajguz, A (2010). An enhancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures under heavy metals stress. Environmental and Experimental Botany, 68, pp.175—179. https://doi.org/10.1016/j.envexpbot.2009.11.003

30. Bechtold, U., Richard, O., Zamboni, A. & Gapper, C. (2008). Impact of chloroplastic — and extracellular-sourced ROS on high light-responsive gene expression in Arabidopsis. Journal of Experimental Botany, 59, pp. 121-133. https://doi.org/10.1093/jxb/erm289

31. Beltran, B., Orsi, A., Clementi, E. & Moncada, S. (2000). Oxidative stress and S-nitrosylation of proteins in cells. Braz. J. Pharmacol, 129, pp. 953-960. https://doi.org/10.1038/sj.bjp.0703147

32. Brown, G.C. (1995). Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett, 369, 136-139. https://doi.org/10.1016/0014-5793(95)00763-Y

33. Chaki, M., Valderrama, R., Fernandez-Ocana, A.M., Carreras, A., Gomes-Rodriges, M.V., Pedraias, J.R., Begara – Morales, J.S., Sanches-Calvo, B., Lugue, F., Leterrier, M., Corpas, F.J. & Barroso, J.P. (2011).Mechanical wounding induces a nitrosative stress by downregulation of GSNO reductase and a rise of S-nitrosothiols in sunflower (Helianthus annuus) seedlings. Journal of Experimental Botany, 62, pp. 1803-1813. https://doi.org/10.1093/jxb/erq358

34. Cheng, W., Zhang, L., Jiao, C., Su, M., Yang, T., Zhou, L., Peng, R., Wang, R. & Wang, C. (2013). Hydrogen sulfide alleviates hypoxia-induced root tip death in Pisum sativum. Plant Physiol. Biochem., 70, pp. 278-286. https://doi.org/10.1016/j.plaphy.2013.05.042

35. Christou, A., Filippou, P., Manganaris, G. & Fotopoulos, V. (2014). Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin. BMC Plant Biology, 14: 42. doi:10.1186/1471-2229-14-42 https://doi.org/10.1186/1471-2229-14-42

36. Christou, A., Manganaris, G.A., Papadopoulos, I. & Fotopoulos, V. (2013). Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defense pathways. Journal of Experimental Botany, 64, pp. 1953-1966. https://doi.org/10.1093/jxb/ert055

37. Clarke A., Desikan R., Hurst, R.D., Hancock, J.T. & Neill, S.V. NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J., 24, pp. 667-677. https://doi.org/10.1046/j.1365-313x.2000.00911.x

38. Cooper, C.E. (1999). Nitric oxide and iron proteins. Biochem. Biophys. Acta., 1411, pp. 290-309. https://doi.org/10.1016/S0005-2728(99)00021-3

39. Cvetkovska, M. & Vanlerberghe, G.C. (2013). Alternative oxidase impacts the plant response to biotic stress by influencing the mitochondrial generation of reactive oxygen species. Plant Cell Environ., 36, pp. 721-732. https://doi.org/10.1111/pce.12009

40. Del Rio, L.A., Sandalio, L.M. & Corpas, F.J. (2006). Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol., 141, pp. 330-335. https://doi.org/10.1104/pp.106.078204

41. Dietz, K.J. (2014).Redox regulation of transcription factors in plant stress acclimation and development. Antioxid Redox Signal, 21, pp.1356-1373. https://doi.org/10.1089/ars.2013.5672

42. Dombrecht, B., Xue, G.P., Sprague, S.J., Kirkegaard, J.A., Ross, J.J., Reid, J.B., Fitt, G.P., Sewelam, N., Schenk, P.M., Manners, J.M. & Kazan. (2007). MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell, 19, pp. 2225-2245. https://doi.org/10.1105/tpc.106.048017

43. Esim, N. & Atici, O. (2015). Effects of exogenous nitric oxide and salicylic acid on chilling-induced oxidative stress in wheat (Triticum aestivum). Frontiers in Life Science, 8, pp. 124-130. https://doi.org/10.1080/21553769.2014.998299

44. Fariduddin, Q., Khalil, R.R.A.E., Mir, B.A., Yusuf, M. & Ahmad, A. (2013). 24-Epibrassinolide regulates photosynthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress. Environ. Monit. Assess., 185, pp.7845-7856. https://doi.org/10.1007/s10661-013-3139-x

45. Ford, P.C. (2010). Reactions of NO and nitrite with heme models and proteins. Inorg. Chem,49, pp. 6226-6239. https://doi.org/10.1021/ic902073z

46. Foyer, C.H. & Noctor, G. (2009). Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal, 11, pp. 861-906. https://doi.org/10.1089/ars.2008.2177

47. Foyer, C.H. & Shigeoka, S. (2011). Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiology,155, pp. 93-100. https://doi.org/10.1104/pp.110.166181

48. Freschi, L. (2013). Nitric oxide and phytohormone interactions: current status and perspectives. Front. Plant Sci., 4, 398. https://doi.org/10.3389/fpls.2013.00398

49. Fu, P.N., Wang, W.J., Hou, L.X. & Liu, X. (2013). Hydrogen sulfide is involved in the chilling stress response in Vitis vinifera L. Acta Societatis Botanicorum Poloniae, 82, pp. 295-302. https://doi.org/10.5586/asbp.2013.031

50. Gautam, V., Kaur, R. & Kohli, S.K. (2017). ROS Compartmentalization in plant cells under abiotic stress condition. In: Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress. Springer Nature Singapore Pte Ltd., pp. 89-114. https://doi.org/10.1007/978-981-10-5254-5_4

51. Gill, S.S. & Tuteja, N.(2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, pp. 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016

52. Guajardo, E., Juan, A.C. & Contreras-Porcia, L. (2016). Role of abscisic acid (ABA) in activating antioxidant tolerance responses to desiccation stress in intertidal seaweed species. Planta, 243, pp.767-781. https://doi.org/10.1007/s00425-015-2438-6

53. Guo J., Pang Q., Wang L. & Yu, P. (2012). Proteomic identification of MYC2-dependent jasmonate-regulated proteins in Arabidopsis thaliana. Proteome Science, 10, pp. 1-13. https://doi.org/10.1186/1477-5956-10-57

54. Hancock, J.T. (2017). Harnessing evolutionary toxins for signaling: reactive oxygen species, nitric oxide and hydrogen sulfide in plant cell regulation. Front. Plant Sci, 8, 189. https://doi.org/10.3389/fpls.2017.00189

55. Huang, S. & Millar, A.H. (2013). Succinate dehydrogenase: the complex roles of a simple enzyme. Curr. Opin. Plant Biol., 16, pp. 344-349. https://doi.org/10.1016/j.pbi.2013.02.007

56. Hu, X., Jiang, M., Zhang, J., Zhang, A., Lin, F. & Tan, M. (2007). Calcium-calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants. New Phytologist, 173, pp. 27-38. https://doi.org/10.1111/j.1469-8137.2006.01888.x

57. Jeandroz, S., Lamotte, O., Astier, J., Rasul, S., Trapet, P., Besson-Bard, A., Bourgue, S., Nicolas-Frances, V., Ma, W., Berkowitz, G.A. & Wendehenne, D. (2013). (There's more to the picture than meets the eye: nitric oxide cross talk with Ca2+ signaling. Plant Physiology,163, pp. 459-470. https://doi.org/10.1104/pp.113.220624

58. Kaur, N. & Gupta, A.K. (2005). Signal transduction pathways under abiotic stresses in plant. Curr. Sci., 88, pp.1771-1780.

59. Kawano, T., Sahashi, N., Takahashi, K., Uozumi, N. & Muto, S. (1998). Salicylic acid induces extracellular superoxide generation followed by an increase in cytosolic calcium ion in tobacco suspension culture: the earliest events in salicylic acid signal transduction. Plant Cell Physiol., 39, pp. 721-730. https://doi.org/10.1093/oxfordjournals.pcp.a029426

60. Keramat, B., Kalantari, K.M. & Arvin, M.J. (2009). Effects of methyl jasmonate in regulating cadmium induced oxidative stress in soybean plant (Glycine max L.). African Journal of Microbiology Research, 3, pp. 240-244.

61. Klessig D.F., Durner J., Noad R. & Navarre, R. (2000). Nitric oxide and salicylic acid signalling in plant defense . Proceedings of the National Academy of Sciences, 97, pp. 8849-8855. https://doi.org/10.1073/pnas.97.16.8849

62. Knight, H., Trewavas, A.J. & Knight, M.R. (1997). Calcium signaling in Arabidopsis thaliana responding to drought and salinity. Plant J., 12, pp. 1067-1078. https://doi.org/10.1046/j.1365-313X.1997.12051067.x

63. Kolupaev, Yu.Ye., Karpets, Yu.V. & Kosakivska, I.V. (2008). The importance of reactive oxygen species in the induction of plant resistance to heat stress. Gen. Appl. Plant Physiol., 34(3,4), pp. 251-266.

64. Lai, D.W., Mao, Y., Zhou, H., Li, F., Wu, M., Zhang, G., He, Z., Cui, W. & Xie, Y. (2014). Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa. Plant Sci., 225, pp. 117-129. https://doi.org/10.1016/j.plantsci.2014.06.006

65. Liang, W., Wang, M. & Ai, X. (2009). The role of calcium in regulating photosynthesis and related physiological indexes of cucumber seedlings under low light intensity and suboptimal temperature stress. Sci. Hort., 123, pp. 34-38. https://doi.org/10.1016/j.scienta.2009.07.015

66. Lisjak M., Teklic T., Wilson, I.D., Whiteman, M. & Hancock, J.T. (2013). Hydrogen sulfide: environmental factor or signalling molecule? Plant Cell Environment, 36, pp. 1607-1616. https://doi.org/10.1111/pce.12073

67. Li T., Jia, K.P., Lian H.L., Yang, X., Li, L. & Yang, H.Q. (2014) Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis. Biochem. Biophys. Res. Commun., 454, pp. 78-83. https://doi.org/10.1016/j.bbrc.2014.10.059

68. Liu, Y., Hao, Y., Liu, Y. & Huang, W. (2005). Effects of wounding and exogenous jasmonic acid on the peroxidation of membrane lipid in pea seedlings leaves. Agricult. Sci. China., 4, pp.614-620.

69. Li, Y.H., Liu, Y.J., Xu, X.L., Jin, M., An, L.Z. & Zhang, H. (2012). Effect of 24-epibrassinolide on drought stress-induced changes in Chorispora bungeana. Biologia Plantarum, 56, pp. 192-196. https://doi.org/10.1007/s10535-012-0041-2

70. Li, Z.G., Yi, X.Y. & Li, Y.T. (2014). Effect of pretreatment with hydrogen sulfide donor sodium hydrosulfide on heat tolerance in relation to antioxidant system in maize (Zea mays) seedlings. Biologia, 69, pp. 1001-1009. https://doi.org/10.2478/s11756-014-0396-2

71. Lozano-Juste, J., Colom-Moreno, R. & Leon, J. (2011). In vivo protein tyrosine nitration in Arabidopsis thaliana. Journal of Experimental Botany, 62, pp. 3501 -3517. https://doi.org/10.1093/jxb/err042

72. Ma, C., Wang, Z.Q., Zhang, L.T., Sun, M.M. & Lin, T.B. (2014). Photosynthetic responses of wheat (Triticum aestivum L.) to combined effects of drought and exogenous methyl jasmonate. Photosynthetica, 52, pp. 377-385. https://doi.org/10.1007/s11099-014-0041-x

73. Mika, A., Boenisch, M.J., Hopff, D. & Luthje, S. (2010). Membrane-bound guaiacol peroxidases from maize (Zea mays L.) roots are regulated by methyl jasmonate, salicylic acid, and pathogen elicitors. Journal of Experimental Botany, 61, pp. 831-841. https://doi.org/10.1093/jxb/erp353

74. Minibayeva F., Kolesnikov O., Chasov A., Beckett, R.P., Luthje, S., Vylegzhanina, N., Buck, F. & Bottger, M. (2009).Wound-induced apoplastic peroxidase activities: their roles in the production and detoxification of reactive oxygen species. Plant Cell Environ., 32, pp. 497-508. https://doi.org/10.1111/j.1365-3040.2009.01944.x

75. Mostofa, M.G., Fujita, M. & Tran, L.S.P. (2015). Nitric oxide mediates hydrogen peroxide- and salicylic acid-induced salt tolerance in rice (Oryza sativa L.) seedlings. Plant Grow. Regul., 77, pp. 265-277. https://doi.org/10.1007/s10725-015-0061-y

76. Mur, L.A.J., Kenton, P., Atzorn, R., Miersch, O. & Wasternack, C. (2006). The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiology, 140, pp. 249-262. https://doi.org/10.1104/pp.105.072348

77. Mur, L.A.J., Prats, E. & Pierre, S. (2013). Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways. Front. Plant Sci., 4: 215. doi: 10.3389/fpls.2013.00215. https://doi.org/10.3389/fpls.2013.00215

78. Ndamukong, I., Al Abdallat, A., Thurow, C., Fode, B., Zander, M., Weigel, R. & Gatz, C. (2007). SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA responsive PDF1.2 transcription. Plant J., 50, pp.128-139. https://doi.org/10.1111/j.1365-313X.2007.03039.x

79. Noctor, G., Mhamdi, A. & Foyer, C.H. (2014). The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiology, 164, pp. 1636-1648. https://doi.org/10.1104/pp.113.233478

80. Ogasawara, Y., Kaya, H., Hiraoka, G., Yumoto, F., Kimura, S., Kadota, Y., Hishinuma, H., Senzaki, E., Yamogoe, S., Nagata, K., Nara, M., Suzuki, K., Tanokura, M. & Kushitsu, K. (2008). Synergistic activation of the Arabidopsis NADPH oxidase Atrboh D by Ca2+ and phosphorylation. J. Biol. Chem., 283, pp. 8885-8892. https://doi.org/10.1074/jbc.M708106200

81. Ogweno, J.O., Song, X.S., Shi K., Hu, H.W., Mao, W.H., Zhou, Y.H. & Yu, J.Q. (2008). Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. Journal of Plant Growth Regulation, 27, pp. 49-57. https://doi.org/10.1007/s00344-007-9030-7

82. Ozdemir, F., Bor, M., Demiral, T. & Turkan, I. (2004). Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regulation, 42, pp. 203-211. https://doi.org/10.1023/B:GROW.0000026509.25995.13

83. Paciolla, C., Paradiso, A. & de Pinto, M.C. (2016). Cellular redox homeostasis as central modulator in plant stress response. Redox State as a Central Regulator of Plant-Cell Stress Responses. Eds. D.K. Gupta et al. Springer International Publishing Switzerland, pp. 1-23. https://doi.org/10.1007/978-3-319-44081-1_1

84. Parida, A.K. & Das, A.B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicol. and Environ. Safety., 60, pp. 324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010

85. Popova, L.P., Maslenkova, L.T., Yordanova, R.Y., Ivanova, A.P., Krantev, A.P., Szalai, G. & Janda, T. (2009). Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol. Biochem., 47, pp. 224-231. https://doi.org/10.1016/j.plaphy.2008.11.007

86. Radi, R. (2004). Nitric oxide, oxidants, and protein tyrosine nitration. Proc. Natl. Acad. Sci., 101, pp. 4003-4008. https://doi.org/10.1073/pnas.0307446101

87. Rao M.V., Paliyaht G., Ormrod D.P., Murr, D.P. & Watkins, C.B. (1997). Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes (salicylic acid-mediated oxidative damage requires H2O2). Plant Physiol., 115, pp. 137-149. https://doi.org/10.1104/pp.115.1.137

88. Rentel, M.C. & Knight, M.R. (2004). Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiol., 135, pp. 1471-1479. https://doi.org/10.1104/pp.104.042663

89. Sagi, M. & Fluhr, R. (2006). Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol., 141, pp. 336-340. https://doi.org/10.1104/pp.106.078089

90. Shana, C. & Liang, Z. (2010). Jasmonicacid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Plant Sci., 178, pp. 130-139. https://doi.org/10.1016/j.plantsci.2009.11.002

91. Sharma, I., Pati, P.K. & Bhardwaj, R. (2011). Effect of 24-epibrassinolide on oxidative stress markers induced by nickel-ion in Raphanus sativus L. Acta Physiol. Plant., 33, pp. 1723-1735. https://doi.org/10.1007/s11738-010-0709-1

92. Shi, H., Ye T. & Chan, Z. (2013). Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L.). Pers.). Plant Physiol. Biochem., 71, pp. 226-234. https://doi.org/10.1016/j.plaphy.2013.07.021

93. Shi, H., Ye, T. & Chan, Z. (2014). Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass (Cynodon dactylon (L). Pers.). Plant Physiol. Biochem., 74, pp. 99-107. https://doi.org/10.1016/j.plaphy.2013.11.001

94. Siddiqui, M.H., Al-Whaibi, M.H. & Ali, H.M. (2013). Mitigation of nickel stress by the exogenous application of salicylic acid and nitric oxide in wheat. Australian Journal of Crop Science, 7, pp. 1780-1788.

95. Singh, H.P., Batish, D.R., Kaur, G. & Arora, K. (2008). Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environmental and Experimental Botany, 63, pp.158-167. https://doi.org/10.1016/j.envexpbot.2007.12.005

96. Slathia, S., Sharma, A. & Choudhary, S.P. (2012). Influence of exogenously applied epibrassinolide and putrescine on protein content, antioxidant enzymes and lipid peroxidation in Lycopersicon esculentum under salinity stress. American Journal of Plant Sciences, 3, pp. 714-720. https://doi.org/10.4236/ajps.2012.36086

97. Suzuki, N. & Mittler, R. (2006). Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiologia Plantarum, 126, pp. 45-51. https://doi.org/10.1111/j.0031-9317.2005.00582.x

98. Swamy K.N., Anuradha S., Ramakrishna B. (2011). Cadmium toxicity is diminished by 24-epibrassinolide in seedlings of Trigonella foenum-graecum L. Gen. Plant Physiol., 1, No. 3-4, pp. 163-175.

99. Talaat, N.B. & Shawky, B.T. (2013). 24-Epibrassinolide alleviates salt-induced inhibition of productivity by increasing nutrients and compatible solutes accumulation and enhancing antioxidant system in wheat (Triticum aestivum L.). Acta Physiologiae Plantarum, 35, pp. 729-740. https://doi.org/10.1007/s11738-012-1113-9

100.Tuteja, N. & Sopory, S.K. (2008). Chemical signaling under abiotic stress environment in plants. Plant Signal Behav, 3, pp. 525-536. https://doi.org/10.4161/psb.3.8.6186

101. Vardhini, B.V., Sujatha, E.S. & Rao, S.R. (2012). Brassinosteroids on the oxidizing and hydrolyzing enzymes of radish plants. J. Phytol., 4, pp. 1-4.

102. Vranova, E., Inze, D. & Breusegem, F. (2002). Signal transduction during oxidative stress. Journal of Experimental Botany, 53, 1227-1236. https://doi.org/10.1093/jexbot/53.372.1227

103. Wang, H., Feng, T., Peng, X., Yan, M. & Tang, X. (2009). Up-regulation of chloroplastic antioxidant capacity is involved in alleviation of nickel toxicity of Zea mays L. by exogenous salicylic acid. Ecotoxicology and Environmental Safety, 72, pp.1354-1362. https://doi.org/10.1016/j.ecoenv.2009.03.008

104. Wang, L.J. & Li, S.H. (2006). Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Sci., 170, pp. 685-694. https://doi.org/10.1016/j.plantsci.2005.09.005

105. Wang, Y., Li, L. & Cui, W. (2012). Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway. Plant Soil, 351, pp. 107-119. https://doi.org/10.1007/s11104-011-0936-2

106. Wendehenne, D., Durner, J., Chen, Z. & Klessig, D.F. (1998). Benzothiadiazole, an inducer of plant defenses, inhibits catalase and ascorbate peroxidase. Phytochemistry, 47, pp. 651-657. https://doi.org/10.1016/S0031-9422(97)00604-3

107. Xia, X.J., Wang ,Y.J., Zhou, Y.H., Tao, Y., Mao, W.H., Shi, K., Asami, T., Chen, Z. & Yu, J.Q. (2009). Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol., 150, pp. 801-814. https://doi.org/10.1104/pp.109.138230

108. Xu, L.L., Fan, Z.Y. & Dong, Y.J. (2015). Effects of exogenous salicylic acid and nitric oxide on physiological characteristics of two peanut cultivars under cadmium stress. Biologia Plantarum, 59, pp. 171-182. https://doi.org/10.1007/s10535-014-0475-9

109. Yan, F., Liu, Y. & Sheng, H. (2016). Salicylic acid and nitric oxide increase photosynthesis and antioxidant defense in wheat under UV-B stress. Biologia Plantarum, 60, pp. 686-694. https://doi.org/10.1007/s10535-016-0622-6

110. Yang, T. & Poovaiah, B.W. (2002). Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc. Natl. Acad. Sci. USA., 99, pp. 4097-4102. https://doi.org/10.1073/pnas.052564899

111. Yoshimura, K., Yabuta, Yu., Ishikawa, T. & Shigeoka, S. (2000). Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiol., 123, pp. 223-233. https://doi.org/10.1104/pp.123.1.223

112. Yoshioka, H., Sugie, K., Park, H.J., Maeda, H., Tsuda, N., Kawakita, K. & Doke, N. (2001). Induction of plant gp91 phonx homolog by fungal cell wall, arachidonic acid, and salicylic acid in potato. Mol. Plant-Microbe. Interact., 14, pp. 725-736. https://doi.org/10.1094/MPMI.2001.14.6.725

113. Zhang, A., Jiang, M., Zhang, J., Ding, H., Xu, S., Hu, X. & Tan, M. Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytol., 175, pp. 36-50. https://doi.org/10.1111/j.1469-8137.2007.02071.x

114. Zhang, H., Ye, Y.K., Wang, S.H. (2009). Hydrogen sulfide counteracts chlorophyll loss in sweet potato seedling leaves and alleviates oxidative damage against osmotic stress. Plant Grow. Regul., 58, pp. 243-250. https://doi.org/10.1007/s10725-009-9372-1

115. Zhong-Guang, L. & Ming, G. (2011). Mechanical stimulation-induced cross-adaptation in plants: An overview. J. Plant Biol., 54, pp. 358-364. https://doi.org/10.1007/s12374-011-9178-3