Физиология растений и генетика 2016, том 48, № 2, 95-111, doi: https://doi.org/10.15407/frg2016.02.095

Роль жасмонатов в адаптации растений к действию абиотических стрессоров

Колупаев Ю.Е., Ястреб Т.О., Луговая А.А.

  • Харьковский национальный аграрный университет им. В.В. Докучаева 62483 Харьков, п/о «Коммунист-1»

Обобщены сведения о синтезе жасмоновой кислоты (ЖАК) у растений, влиянии на ее содержание стрессовых факторов и сигнальных посредников. Рассмотрены участники процессов рецепции и трансдукции сигналов ЖАК в генетический аппарат. Особое внимание уделено роли транскрипт-фактора JIN1/MYC2 в реализации физиологических эффектов ЖАК. Охарактеризованы жасмонатзависимые адаптивные реакции растений, в частности, индуцирование ЖАК антиоксидантной системы. Кратко описан характер взаимодействия ЖАК с другими стрессовыми фитогормонами — абсцизовой и салициловой кислотами, этиленом.

Ключевые слова: жасмоновая кислота, сигнальные посредники, абиотические стрессоры, стрессовые фитогормоны, адаптивные реакции

Физиология растений и генетика
2016, том 48, № 2, 95-111

Полный текст и дополнительные материалы

В свободном доступе: PDF  

Цитированная литература

1. Vayner, A.A., Lugovaya, A.A., Kolupaev, Yu.E. & Miroshnichenko, N.N. (2015). The infl uence of jasmonic acid on productivity and resistance of millet plants to unfavorable abiotic factors. Agrokhimiya, 4, pp. 62-67. [in Russian].

2. Glyanko, A.K. & Ishchenko, A.A. (2010). Structural and functional characteristics of plant NADPH oxidase: A review. Appl. Biochem. Microbiol., 46 (5), pp. 463-471. https://doi.org/10.1134/S0003683810050017

3. Karpets, Yu.V., Kolupaev, Yu.E. & Kosakivska, I.V. (2016). Nitric oxide and hydrogen peroxide as signal mediators at induction of heat resistance of wheat plantlets by exogenous jasmonic and salicylic asids. Fisiol. rast. genet., 48, No. 2, pp. 158-166. [in Russian]. https://doi.org/10.15407/frg2016.02.158

4. Karpets, Yu.V., Kolupaev, Yu.E., Lugovaya, A.A. & Oboznyi, A.I. (2014). Effect of jasmonic acid on the pro-/antioxidant system of wheat coleoptiles as related to hyperthermia tolerance. Russ. J. Plant Physiol., 61 (3), pp. 339-346. https://doi.org/10.1134/S102144371402006X

5. Kolupaev,Yu.E. & Karpets, Yu.V. (2010). Formation of adaptive responses of plants to the action of abiotic stressors. Kiev: Osnova [in Russian].

6. Kolupaev, Yu.E., Lugova, G.A., Oboznyi, A.I., Yastreb, T.O., Karpets, Yu.V. & Musatenko, L.I. (2013). Signal intermediates at the induction of antioxidant enzymes of plant cells by jasmonic acid. Dopov. Nac. akad. nauk Ukr., No. 10, pp. 159-164. [in Russian].

7. Lapa, S.V., Kovbasenko, R.V., Kovbasenko, V.M. & Dmytriev, O.P. (2012). Jasmonic acid: functions and mechanisms of action in plants. Kyiv: Kolobig [in Ukrainian].

8. Lugova, G.A., Karpets, Yu.V., Grygorenko, D.O., Kolomoets, B.O., Obozniy, O.I., Miroshnichenko, M.M. & Kolupaev, Yu.E. (2015). Influence of jasmonic acid on productivity of barley plants and their resistance to drought and fungal infections. Visn. Hark. nac. agrar. univ., Ser. Biol., 3 (36), pp. 54-61. [in Russian].

9. Maksimov, I.V., Sorokan, A.V., Chereoanova, E.A., Surina, O.B., Troshina, N.B. & Yarullina, L.G. (2011). Effects of salicylic and jasmonic acids on the components of pro/antioxidant system in potato plants infected with late blight. Russ. J. Plant Physiol., 58 (4), pp. 299-306. https://doi.org/10.1134/S1021443711010109

10. Paniuta, O.O., Shabliy, V.A. & Belava, V.N. (2009). Jasmonic acid and its participation in defence reactions of plant organism. Ukr. Biochem. J., 81 (2), pp. 14-26. [in Ukrainian].

11. Savchenko, T.V., Zastrijnaja, O.M. & Klimov, V.V. (2014). Oxylipins and plant abiotic stress resistance. Biochemistry (Mosc.), 79 (4), pp. 362-375. https://doi.org/10.1134/S0006297914040051

12. Tishchenko, E.N. (2013). Genetic engineering with use of L-proline metabolism genes for increase of plant osmotolerance. Fisiol. rast. genet., 45, No. 6, pp. 488-500. [in Russian].

13. Yastreb, T.O., Kolupaev, Yu.E., Lugovaya, A.A. & Dmitriev, A.P. (2015).The role of jasmonate signaling in the adaptation of Arabidopsis thaliana plants to salt stress. In Fundamental and applied problems of modern experimental of plant biology. Moscow, pp. 746-750. [in Russian].

14. Yastreb, T.O., Kolupaev, Yu.E., Lugovaya, A.A. & Dmitriev, A.P. (2016). Content of osmolytes and flavonoids under salt stress in Arabidopsis thaliana plants defective in jasmonate signaling. Appl. Biochem. Microbiol., 52 (2), pp. 210-215. https://doi.org/10.1134/S0003683816020186

15. Adie, B., Perez-Perez, J., Perez-Perez, M.M., Godoy, M., Sanchez-Serrano, J.J., Schmelz, E.A. & Solano, R. (2007). ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell, 19, pp. 1665-1681. https://doi.org/10.1105/tpc.106.048041

16. Agrawal, G.K., Tamogami, S., Han, O., Iwahashi, H. & Rakwal, R. (2004). Rice octadecanoid pathway. Biochem. Biophys. Res. Comm., 317(1), pp. 1-15. https://doi.org/10.1016/j.bbrc.2004.03.020

17. Ahlfors, R., Macioszek, V., Rudd J., Brosche, M, Schlichting, R, Scheel, D. & Kangasjarvi, J. (2004). Stress hormone-independent activation and nuclear translocation of mitogen-activated protein kinases in Arabidopsis thaliana during ozone exposure. Plant J., 40(4), pp. 512-522. https://doi.org/10.1111/j.1365-313X.2004.02229.x

18. Altuzar-Molina, A.R., Munoz-Sanchez, J.A., Vazquez-Flota ,F., Monforte-Gonzalez, M., Racagni-Di Palma, G. & Hernandez-Sotomayor, S.M. (2011). Phospholipidic signaling and vanilin production in response to salicylic acid and methyl jasmonate in Capsicum chinense J. cells. Plant Physiol. Biochem., 49 (2), pp. 151-158. https://doi.org/10.1016/j.plaphy.2010.11.005

19. Babenko, L.M., Kosakivska, I.V. & Skaterna, T.D. (2015). Jasmonic acid: role in biotechnology and the regulation of plants biochemical processes. Biotechnol. Acta, 8 (2), pp. 36-51. https://doi.org/10.15407/biotech8.02.036

20. Balbi, V. & Devoto, A. (2008). Jasmonate signalling network in Arabidopsis thaliana: Crucial regulatory nodes and new physiological scenarios. New Phytol., 177 (92), pp. 301-318. https://doi.org/10.1111/j.1469-8137.2007.02292.x

21. Baxter, A., Mittler, R. & Suzuki, N. (2013). ROS as key players in plant stress signalling. J. Exp. Bot., 65 (5), pp. 1229-1240. https://doi.org/10.1093/jxb/ert375

22. Caldelari, D., Wang, G., Farmer, E.E. & Dong, X. (2011). Arabidopsis lox3/lox4 double mutants are male sterile and defective in global proliferative arrest. Plant Mol. Biol., 75 (1-2), pp. 25-33. https://doi.org/10.1007/s11103-010-9701-9

23. Dombrecht, B., Xue, G.P., Sprague, S.J., Kirkegaard, J.A., Ross, J.J., Reid, J.B., Fitt, G.P., Sewelam, N., Schenk, P.M., Manners, J.M. & Kazan, K. (2007). MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell., 19 (7), pp. 2225-2245. https://doi.org/10.1105/tpc.106.048017

24. Du, H., Liu, H. & Xiong, L. (2013). Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Front. Plant Sci., 4, p. 397. https://doi.org/10.3389/fpls.2013.00397

25. Fauriea, B., Cluzeta, S. & Merillon, J.M. (2009). Implication of signaling pathways involving calcium, phosphorylation and active oxygen species in methyl jasmonate-induced defense responses in grapevine cell cultures. J. Plant Physiol., 166, pp. 1863-1877. https://doi.org/10.1016/j.jplph.2009.05.015

26. Fisahn, J., Herde, O., Willmitzer, L. & Pena-Cortes, H. (2004). Analysis of the transient increase in cytosolic Ca2+ during the action potential of higher plants with high temporal resolution: Requirement of Ca2+ transients for induction of jasmonic acid biosynthesis and PINII gene expression. Plant Cell Physiol., 45 (4), pp. 456-459. https://doi.org/10.1093/pcp/pch054

27. Footitt, S., Dietrich, D., Fait, A., Fernie, A.R., Holdsworth, M.J., Baker, A. & Theodoulou, F.L. (2007). The comatose ATP-binding cassette transporter is required for full fertility in Arabidopsis. Plant Physiol., 144 (3), pp. 1467-1480. https://doi.org/10.1104/pp.107.099903

28. Foyer, C.H. & Noctor, G. (2009). Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid. Redox. Signal., 11(4), pp. 861-905. https://doi.org/10.1089/ars.2008.2177

29. Grebner, W., Stingl, N.E., Oenel, A., Mueller, M.J. & Berger, S. (2013). Lipoxygenase-6-dependent oxylipin synthesis in roots is required for abiotic and biotic stress resistance of Arabidopsis. Plant Physiol., 161 (4), pp. 2159-2170. https://doi.org/10.1104/pp.113.214544

30. Guo, J., Pang, Q., Wang, L., Yu, P., Li, N. & Yan, X. (2012). Proteomic identification of MYC2-dependent jasmonate-regulated proteins in Arabidopsis thaliana. Proteome Sci., 10 (1), pp. 1-13. https://doi.org/10.1186/1477-5956-10-57

31. Han, Y., Mhamdi, A., Chaouch, S. & Noctor, G. (2013). Regulation of basal and oxidative stress-triggered jasmonic acid-related gene expression by glutathione. Plant Cell Environ. 36 (6), pp. 1135-1146. https://doi.org/10.1111/pce.12048

32. Hazman, M., Hause, B., Eiche, E., Nick, P. & Riemann, M. Increased tolerance to salt stress in OPDA-deficient rice allene oxide cyclase mutants is linked to an increased ROS-scavenging activity (2015). J. Exp. Bot., 66 (11), pp. 3339-3352. https://doi.org/10.1093/jxb/erv142

33. Howe, G.A., Lee, G.I., Itoh, A., Li, L. & DeRocher, A.E. (2000). Cytochrome P450-dependent metabolism of oxylipins in tomato. Cloning and expression of allene oxide synthase and fatty acid hydroperoxide lyase. Plant Physiol., 123 (2), pp. 711-724. https://doi.org/10.1104/pp.123.2.711

34. Hsu, Y.Y. & Kao, C.H. (2011). Nitric oxide is involved in methyl jasmonate induced lateral root formation in rice. Crop. Environ. Bioinform., 8, pp. 160-167.

35. Huang, X., Stettmaier, K., Michel, C. Hutzler, P., Mueller, M.J. & Durner, J. (2004). Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana. Planta, 218 (6), pp. 938-946. https://doi.org/10.1007/s00425-003-1178-1

36. Hu, Y., Jiang, L., Wang, F. & Yu, D. (2013). Jasmonate regulates the inducer of CBF expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis. Plant Cell., 25 (8), pp. 2907-2924. https://doi.org/10.1105/tpc.113.112631

37. Hyun, Y., Choi, S., Hwang, H.J. Yu, J., Nam, S.J., Ko, J., Park, J.Y., Seo, Y.S., Kim, E.Y., Ryu, S.B., Kim, W.T., Lee, Y.H., Kang, H. & Lee, I. (2008). Cooperation and functional diversification of two closely related galactolipase genes for jasmonate biosynthesis. Dev. Cell, 14(2), pp. 183-192. https://doi.org/10.1016/j.devcel.2007.11.010

38. Hyun, Y. & Lee, L. (2008). Generating and maintaining jasmonic acid in Arabidopsis. Plant Signal. Behav., 3 (10), pp. 798-800. https://doi.org/10.4161/psb.3.10.5875

39. Iqbal, N., Umar, S., Khan, N.A. & Khan, M.I.R. (2014). A new perspective of phytohormones in salinity tolerance: Regulation of proline metabolism. Environ. Exp. Bot., 100, pp. 34-42. https://doi.org/10.1016/j.envexpbot.2013.12.006

40. Ismail, A., Riemann, M. & Nick, P. (2012).The jasmonate pathway mediates salt tolerance in grapevines. J. Exp. Bot., 63 (5), pp. 2127-2139. https://doi.org/10.1093/jxb/err426

41. Katsir, L., Schilmiller, A.L., Staswick, P.E., He, S.Y. & Howe, G.A. (2008). COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc. Natl. Acad. Sci. USA, 105 (19), pp. 7100-7105. https://doi.org/10.1073/pnas.0802332105

42. Kavi Kishor, P.B. & Sreenivasulu, N. (2014). Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ., 37 (2), pp. 300-311. https://doi.org/10.1111/pce.12157

43. Kazan, K. (2015). Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci., 20(4), pp. 219-229. https://doi.org/10.1016/j.tplants.2015.02.001

44. Keramat, B., Kalantari, K.M. & Arvin, M.J. (2009). Effects of methyl jasmonate in regulating cadmium induced oxidative stress in soybean plant (Glycine max L.). Afr. J. Microbiol. Res., 3, pp. 240-244.

45. Koorneef, A. & Pieterse, C.M.J. Cross talk in defense signaling (2008). Plant Physiol., 146 (3), pp. 839-844. https://doi.org/10.1104/pp.107.112029

46. Kramell, R., Atzorn, R., Schneider, G., Miersch, O., Bruckner, C.. Schmidt, J., Sembdner, G. & Parthier, B. (1995). Occurrence and identification of jasmonic acid and its amino acid conjugates induced by osmotic stress in barley leaf tissue. J. Plant Growth Regul., 14, pp. 29-36. https://doi.org/10.1007/BF00212643

47. Kumari, G.J., Reddy, A.M., Naik, S.T., Kumar, S.G., Prasanthi, J., Sriranganayakulu, G., Reddy, P.C. & Sudhakar, C. (2006). Jasmonic acid induced changes in protein pattern, antioxidative enzyme activities and peroxidase isozymes in peanut seedlings. Biol. Plant., 50 (2), pp. 219-226. https://doi.org/10.1007/s10535-006-0010-8

48. Kumar, K., Kumar, M., Kim, S.R., Ryu, H. & Cho, Y.G. (2013). Insights into genomics of salt stress response in rice. Rice, 6: 27. https://doi.org/10.1186/1939-8433-6-27

49. Lackman, P., Gonzalez-Guzman, M., Tilleman, S., Carqueijeiro, I., Perez, A.C., Moses, T., Seo, M., Kanno, Y., Hakkinen, S.T., Van Montagu, M.C., Thevelein, J.M., Maaheimo, H., Oksman-Caldentey, K.M., Rodriguez, P.L., Rischer, H. & Goossens, A. (2011). Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. Proc. Natl. Acad. Sci. USA, 108 (14), pp. 5891-5896. https://doi.org/10.1073/pnas.1103010108

50. Laudert, D. & Weiller, E.W. (1998). Allene oxide synthase: a major control point in Arabidopsis thaliana octadecanoid signalling. Plant J., 15, pp. 675-684. https://doi.org/10.1046/j.1365-313x.1998.00245.x

51. Laurie-Berry, N., Joardar, V., Street, I.H. & Kunkel, B.N. (2006). The Arabidopsis thaliana jasmonate insensitive 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae. Mol. Plant-Microbe Interact., 19, pp. 789-800. https://doi.org/10.1094/MPMI-19-0789

52. Liechti, R. & Farmer, E.E. (2003). Jasmonate biochemical pathway. Sci. STKE, 2003(203): CM18. https://doi.org/10.1126/stke.2003.203.cm18

53. Li, T., Jia, K.P., Lian, H.L. Yang, X., Li, L. & Yang, H.Q. (2014). Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis. Biochem. Biophys. Res. Comm., 454(1), pp. 78-83. https://doi.org/10.1016/j.bbrc.2014.10.059

54. Liu, Y., Hao, Y., Liu, Y. & Huang, W. (2005). Effects of wounding and exogenous jasmonic acid on the peroxidation of membrane lipid in pea seedlings leaves. Agricult. Sci. China, 4, pp. 614-620.

55. Lodeyro, A.F. & Carrillo, N. (2015). Chapter 1. Salt stress in higher plants: Mechanisms of toxicity and defensive responses. In: Tripathi, B.N. & Muller, M. (Eds). Stress Responses in Plants Mechanisms of Toxicity and Tolerance. Heidelberg; New York; Dordrecht; London: Springer, pp. 1-34. https://doi.org/10.1007/978-3-319-13368-3_1

56. Lorenzo, O., Piqueras, R., Sanchez-Serrano, J.J. & Solano, R. (2003). Ethylene Response Factor1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell, 15 (1), pp. 165-178. https://doi.org/10.1105/tpc.007468

57. Ma, C., Wang, Z.Q., Zhang, L.T., Sun, M.M. & Lin, T.B. (2014). Photosynthetic responses of wheat (Triticum aestivum L.) to combined effects of drought and exogenous methyl jasmonate. Photosynthetica, 52, pp. 377-385. https://doi.org/10.1007/s11099-014-0041-x

58. Marino, D., Dunand, C., Puppo, A. & Pauly, N. (2012). A burst of plant NADPH oxidases. Trends Plant Sci., 17(1), pp. 9-15. https://doi.org/10.1016/j.tplants.2011.10.001

59. Miao, Y. & Zentgraf, U. (2007). The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell, 19 (3), pp. 819-830. https://doi.org/10.1105/tpc.106.042705

60. Orozco-Cardenas, M.L., Narvaez-Vasquez, J. & Ryan, C.A. (2001). Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell, 13 (1), pp. 179-191. https://doi.org/10.1105/tpc.13.1.179

61. Pang, Y., Rong, X. & Shi, L. (2006). Influence of exogenous methyl jasmonate on germination of rice seeds under salt stress. J.S. China Agr. Univ. Natur. Sci., 27, pp. 113-116.

62. Pedranzani, H., Racagni, G., Alemano, S., Miersch, O., Ramirez, I., Pena-Cortes, H., Taleisnik, E., Machado-Domenech, E. & Abdala, G. (2003). Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regul., 41 (2), pp. 149-158. https://doi.org/10.1023/A:1027311319940

63. Roveda-Hoyos, G. & Fonseca-Moreno, L.P. (2011). Proteomics: a tool for the study of plant response to abiotic stress. Agr. Colombiana, 29, pp. 221-230.

64. Sanchez-Romera, B., Ruiz-Lozano, J.M., Li, G., Martinez-Ballesta Mdel, C., Carvajal, M., Zamarreno, A.M., Garcia-Mina, J.M., Maurel, C. & Aroca, R. (2014). Enhancement of root hydraulic conductivity by methyl jasmonate and the role of calcium and abscisic acid in this process. Plant Cell Environ., 37 (4), pp. 995-1008. https://doi.org/10.1111/pce.12214

65. Santino, A., Taurino, M., De Domenico, S. Bonsegna, S., Poltronieri, P., Pastor, V. & Flors, V. (2013). Jasmonate signaling in plant development and defense response to multiple (a)biotic stresses. Plant Cell Rep., 32 (7), pp. 1085-1098. https://doi.org/10.1007/s00299-013-1441-2

66. Savchenko, T., Kolla, V.A., Wang, C.Q., Nasafi, Z., Hicks, D.R., Phadungchob, B., Chehab, W.E., Brandizzi, F., Froehlich, J. & Dehesh, K. (2014). Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought. Plant Physiol., 164 (3), pp. 1151-1160. https://doi.org/10.1104/pp.113.234310

67. Scheler, C., Durner J. & Astier J. (2013). Nitric oxide and reactive oxygen species in plant biotic interactions. Curr. Opin. Plant Biol., 16(4), pp. 534-539. https://doi.org/10.1016/j.pbi.2013.06.020

68. Sembdner, G. & Parthier, B. (1993). The biochemistry and the physiological and molecular actions of jasmonates. Annu. Rev. Plant Physiol. Plant Mol. Biol., 44, pp. 569-589. https://doi.org/10.1146/annurev.pp.44.060193.003033

69. Shana, C. & Liang, Z. (2010). Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Plant Sci., 178, pp. 130-139. https://doi.org/10.1016/j.plantsci.2009.11.002

70. Shan, C., Zhou, Y. & Liu, M. (2015). Nitric oxide participates in the regulation of the ascorbate-glutathione cycle by exogenous jasmonic acid in the leaves of wheat seedlings under drought stress. Protoplasma, 252 (5), pp. 1397-1405. https://doi.org/10.1007/s00709-015-0756-y

71. Shen, Y., Tang, M.J., Hu, Y.L. & Lin, Z.P. (2004). Isolation and characterization of a dehydrinlike gene from drought-tolerant Boea crassifolia. Plant Sci., 166, pp. 1167-1175. https://doi.org/10.1016/j.plantsci.2003.12.025

72. Sheteawi, S.A. (2007). Improving growth and yield of salt-stressed soybean by exogenous application of jasmonic acid and ascobin. Int. J. Agr. Biol., 9 (3), pp. 473-478.

73. Simontacchi, M., Garcia-Mata, C., Bartoli, C.G., Santa-Maria, G.E. & Lamattina, L. (2013). Nitric oxide as a key component in hormone-regulated processes. Plant Cell Rep., 32 (6), pp. 853-866. https://doi.org/10.1007/s00299-013-1434-1

74. Staswick, P.E. & Tiryaki, I. (2004). The oxylipin signal jasmonic acid isactivated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell, 16, pp. 2117-2127. https://doi.org/10.1105/tpc.104.023549

75. Stenzel, I., Hause, B., Maucher, H., Pitzschke, A., Miersch, O., Ziegler, J., Ryan, C.A. & Wasternack, C. (2003). Allene oxide cyclase dependence of the wound response and vascular bundle-specific generation of jasmonates in tomato - amplification in wound signaling. Plant J., 33 (3), pp. 577-589. https://doi.org/10.1046/j.1365-313X.2003.01647.x

76. Stenzel, I., Hause, B., Miersch, O., Kurz, T., Maucher, H., Weichert, H., Ziegler, J., Feussner, I. & Wasternack, C. (2003). Jasmonate biosynthesis and the allene oxide cyclase family of Arabidopsis thaliana. Plant Mol. Biol., 51, pp. 895-911. https://doi.org/10.1023/A:1023049319723

77. Suhita, D., Raghavendra, A.S., Kwak, J.M. & Vavasseur, A. (2004). Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol., 134 (4), pp. 1536-1545. https://doi.org/10.1104/pp.103.032250

78. Suza, W.P., Rowe, M.L., Hamberg, M. & Staswick, P.E. (2010). A tomato enzyme synthesizes (+)-7-isojasmonoyl-L-isoleucine in wounded leaves. Planta, 231 (3), pp. 717-728. https://doi.org/10.1007/s00425-009-1080-6

79. Takahama, U. (2004). Oxidation of vacuolar and apoplastic substrates by peroxidase: physiological significance of the oxidation reactions. Phytochem. Rev., 3, pp. 207-219. https://doi.org/10.1023/B:PHYT.0000047805.08470.e3

80. Takahashi, F., Yoshida, R., Ichimura, K., Mizoguchi, T., Seo, S., Yonezawa, M., Maruyama, K., Yamaguchi-Shinozaki, K. & Shinozaki, K. (2007). The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell, 19 (3), pp. 805-818. https://doi.org/10.1105/tpc.106.046581

81. Theodoulou, F.L., Job, K., Slocombe, S.P., Footitt, S., Holdsworth, M., Baker, A., Larson, T.R. & Graham, I.A. (2005). Jasmonic acid levels are reduced in comatose ATP-Binding Cassette Transporter mutants. Implications for transport of jasmonate precursors into peroxisomes. Plant Physiol., 137 (3), pp. 835-840. https://doi.org/10.1104/pp.105.059352

82. Ton, J., Flors, V. & Mauch-Mani, B. (2009). The multifaceted role of ABA in disease resistance. Trends Plant Sci., 14, pp. 310-317. https://doi.org/10.1016/j.tplants.2009.03.006

83. Walia, H., Wilson, C., Condamine, P., Liu, X., Ismail, A.M. & Close, T.J. (2007). Large-scale expression profiling and physiological characterization of jasmonic acid mediated adaptation of barley to salinity stress. Plant Cell Environ., 30 https://doi.org/10.1111/j.1365-3040.2006.01628.x (4), pp. 410-421. https://doi.org/10.1111/j.1365-3040.2006.01628.x

84. Walia, H., Wilson, C., Wahid, A., Condamine, P., Cui, X. & Close, T.J. (2006). Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Funct. Integr. Genomics, 6 (2), pp. 143-156. https://doi.org/10.1007/s10142-005-0013-0

85. Wasternack, C. & Hause, B. (2013). Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot., 111 (6), pp. 1021-1058. https://doi.org/10.1093/aob/mct067

86. Wasternack, C. (2007). Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot., 100 (4), pp. 681-697. https://doi.org/10.1093/aob/mcm079

87. Weber, H., Vick, B.A. & Farmer, E.E. (1997). Dinor-oxo-phytodienoic acid: a new hexadecanoid signal in the jasmonate family. Proc. Natl. Acad. Sci. USA, 94 (19), pp. 10473-10478. https://doi.org/10.1073/pnas.94.19.10473

88. Vadav, V., Mallappa, C., Gangappa, S.N., Bhatia, S. & Chattopadhyay, S. (2005). A basic helix-loop-helix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light-mediated photomorphogenic growth. Plant Cell, 17 (7), pp. 1953-1966. https://doi.org/10.1105/tpc.105.032060

89. Yan, Y., Borrego, E. & Kolomiets, M.V. (2013). Jasmonate biosynthesis, perception and function in plant development and stress responses. In: Baez R.V. (ed.) Lipid Metabolism. inTech., pp. 383-439. https://doi.org/10.5772/52675 https://doi.org/10.5772/52675

90. Zhao, M.L., Wang, J.N., Shan, W., Fan, J.G,, Kuang, J.F., Wu, K.Q., Li, X.P., Chen, W.X., He, F.Y., Chen, J.Y. & Lu, W.J. (2013). Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MaICE1 in methyl jasmonate-induced chilling tolerance in banana fruit. Plant Cell Environ., 36(1), pp. 30-51. https://doi.org/10.1111/j.1365-3040.2012.02551.x

91. Zhao, Y., Dong, W., Zhang, N., Ai, X., Wang, M, Huang, Z., Xiao, L. & Xia, G. (2014). A wheat allene oxide cyclase gene enhances salinity tolerance via jasmonate signaling. Plant Physiol., 164 (2), pp. 1068-1076. https://doi.org/10.1104/pp.113.227595