Физиология растений и генетика 2016, том 48, № 1, 65-74, doi: https://doi.org/10.15407/frg2016.01.065

Получение устойчивых к гербициду фосфинотрицину трансгенных растений пшеницы сорта Зимоярка трансформацией in vitro

Горбатюк И.Р.1, Щербак Н.Л.1, Банникова М.А.1, Великожон Л.Г.1,2, Кучук Н.В.1, Моргун Б.В.1,2

  1. Институт клеточной биологии и генетической инженерии Национальной академии наук Украины, Киев
  2. Институт физиологии растений и генетики Национальной академии наук Украины, Киев

Двумя методами генетической трансформации получены устойчивые к фосфинотрицину растения мягкой пшеницы отечественной селекции сорта Зимоярка, которые несут ген bar бактерии Streptomyces hygroscopicus. Биолистическую трансформацию проводили вектором рАНС25, Agrobacterium-опосредованную — рСВ203 в штамме GV3101. Оба вектора кроме селективного гена фосфинотрицинацетилтрансферазы (bar) содержали репортерный ген b-глюкуронидазы (uidA) Escherichia coli. Первичными эксплантатами служили незрелые зародыши. Методом полимеразной цепной реакции (ПЦР) доказан перенос трансгена bar в геномы регенерантов и отсутствие заражения агробактерией. Экспрессия гена uidA подтверждена гистохимическим анализом. Эффективность трансформации биолистическим методом составляла 0,5 %, Agrobacterium-опосредованным — 1,25 %, что позволило отобрать соответственно 3 и 12 трансгенных линий. Это первое сообщение об успешном получении в Украине трансгенной пшеницы, устойчивой к гербициду фосфинотрицину, с применением культуры in vitro.

Ключевые слова: Triticum aestivum L., bread wheat, genetic transformation of plants, plant biotechnology, herbicides

Физиология растений и генетика
2016, том 48, № 1, 65-74

Полный текст и дополнительные материалы

В свободном доступе: PDF  

Цитированная литература

1. Gorbatyuk, I.R., Gnatyuk, I.S. & Bannikova, M.O.(2015). Effect of growth regulators on the regenerative capacity of bread wheat varieties Zimoyarka. Fiziol. rast. genet., 47, No. 6, pp. 514-525 [in Ukrainian].

2. Dubrovna, O.V., Morgun, B.V. & Bavol, A.V. (2014). Wheat biotechnology: cell selection and genetic engineering. Kyiv: Logos [in Ukrainian].

3. Altpeter, F., Vasil, V., Srivastava, V., Stoger, E. & Vasil, I.K. (1996). Accelerated production of transgenic wheat (Triticum aestivum L.) plants. Plant Cell Reports, 16, pp. 12-17. https://doi.org/10.1007/BF01275440

4. Bertani, G. (1951). Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. Journal of Bacteriology, 62, pp. 293-300.

5. Binka, A., Orczyk, W. & Nadolska-Orczyk, A. (2012). The Agrobacterium-mediated transformation of common wheat (Triticum aestivum L.) and triticale (xTritocosecale Wittmack): role of the binary vector system and selection cassettes. Journal of Applied Genetics, 53, pp. 1-8. https://doi.org/10.1007/s13353-011-0064-y

6. Birch, R.G. (1997). Plant transformation problems and strategies for practical application. Annal Review of Plant Physiology and Plant Molecular Biology, 48, pp. 297-326. https://doi.org/10.1146/annurev.arplant.48.1.297

7. Christensen, A.H. & Quail, P.H. (1996). Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Research, 5, pp. 213-218. https://doi.org/10.1007/BF01969712

8. Dai, S.H. (2001). Comparative analysis of transgenic plants obtained by Agrobacterium-mediated transformation and particle bombardment. Molecular Breeding, 7, pp. 25-33. https://doi.org/10.1023/A:1009687511633

9. Ding, L. (2009). Optimization of Agrobacterium-mediated transformation conditions in mature embryos of elite wheat. Molecular Biology Reports, 36, pp. 29-36. https://doi.org/10.1007/s11033-007-9148-5

10. Gamborg, O.L. & Eveleigh, D. (1968). Culture methods and detection of glucanases in cultures of wheat and barley. Canadian Journal Biochemistry, 46, No. 5, pp. 417-421. https://doi.org/10.1139/o68-063

11. He, Y., Jones, H.D., Chen, S., Chen, X.M., Wang, D.W., Li, K.X., Wang, D.S. & Xia, L.Q. (2010). Agrobacterium-mediated transformation of durum wheat (Agrobacterium-mediated transformation (Triticum turgidum L. var. durum cv. Stewart) with improved efficiency. Journal of Experemental Botany, 61, pp. 1567-1581. https://doi.org/10.1093/jxb/erq035

12. Hiei, Y., Ishida, Y. & Komari, T. (2014). Progress of cereal transformation technology mediated by Agrobacterium tumefaciens. Frontiers in Plant Sciences, 5, pp. 1-11. https://doi.org/10.3389/fpls.2014.00628

13. Hu, T., Metz, S., Chay, C., Zhou, H.P., Biest, N., Chen, G., Chenq, M., Fenq, X., Radionenko, M., Lu, F. & Fry, J. (2003). Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Reports, 21, pp. 1010-1019. https://doi.org/10.1007/s00299-003-0617-6

14. Khanna, H.K. & Daggard, G. (2003). Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium. Plant Cell Reports, 21, pp. 429-436. https://doi.org/10.1007/s00299-002-0529-x

15. Lazzeri, P.A. & Jones, H.D. (2009).Transgenic wheat, barley and oats: production and characterization. Methods in Molecular Biology, 478, pp. 3-22. https://doi.org/10.1007/978-1-59745-379-0_1

16. Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant., 15, pp. 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

17. Nadolska-Orczyk, A., Orczyk, W. & Przetakiewicz, A. (2000). Agrobacterium-mediated transformation of cereals - from technique development to its application. Acta Physiologiae Plantarum, 22, pp. 77-88. https://doi.org/10.1007/s11738-000-0011-8

18. Ombori, O., Vincent, J., Muoma, O. & Machuka, J. (2013). Agrobacterium-mediated genetic transformation of selected tropical inbred and hybrid maize (Zea mays L.) lines. Plant Cell, Tissue and Organ Culture, 113, pp. 11-23. https://doi.org/10.1007/s11240-012-0247-1

19. Rashid, H., Afzal, A. & Khan, M.H. (2010). Effect of bacterial culture density and acetosyringone concentration on Agrobacterium-mediated transformation in wheat. Pakistan Journal of Botany, 42, pp. 4183-4189.

20. Sawada, H., Leki, H. & Matsuda, I. (1995). PCR detection of Ti and Ri plasmids from phytopathogenic Agrobacterium strains. Applied and environmental microbiology, 61, No. 2, pp. 828-831.

21. Sestili, F., Janni, M., Doherty, A., Botticella, E., D Ovidio, R., Masci, S., Jones, H.D. & Lafiandra, D. (2010). Increasing the amylose content of durum wheat through silencing of the SBEIIa genes. BMC Plant Biology, 10, pp. 1-12. https://doi.org/10.1186/1471-2229-10-144

22. Sidorov, V. & Duncan, D. (2009). Agrobacterium-mediated maize transformation: immature embryos versus callus. Methods in Molecular Biology, 526, pp. 47-58. https://doi.org/10.1007/978-1-59745-494-0_4

23. Sparks, C.A., Doherty, A. & Jones, H.D. (2014). Genetic transformation of wheat via Agrobacterium-mediated DNA delivery. Methods in Molecular Biology, 1099, pp. 235-250. https://doi.org/10.1007/978-1-62703-715-0_19

24. Vasil, V., Castillo, A.M., Fromm, M.E. & Vasil, I.K. (1992). Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Biotechnology, 10, pp. 667-674. https://doi.org/10.1038/nbt0692-667

25. Weeks, J.T., Anderson, O.D. & Blechl, A.E. (1993). Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum L.). Plant Physiology, 102, pp. 1077-1084. https://doi.org/10.1104/pp.102.4.1077

26. Zhou, H., Arrowsmith, J.W., Fromm, M.E., Hironaka, C.M., Taylor, M.L., Rodriquez, D., Paieau, M.E., Brown, S.M., Santino, C.G. & Fry, J.E. (1995). Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Reports, 15, pp. 159-163. https://doi.org/10.1007/BF00193711

27. Ziemienowicz, A. (2013). Agrobacterium-mediated plant transformation: Factors, applications and recent advances. Biocatalysis and Agricultural Biotechnology, pp. 1-8.

28. Ziemienowicz, A. (2014). Agrobacterium-mediated plant transformation: Factors, applications and recent advances. Biocatalysis and Agricultural Biotechnology, 3, pp. 95-102. https://doi.org/10.1016/j.bcab.2013.10.004