Физиология растений и генетика 2016, том 48, № 6, 463-474, doi: https://doi.org/10.15407/frg2016.06.463

Ацилгомосеринлактоны бактериального происхождения в биотехнологии праймирования растений: достижения и перспективы использования в аграрном производстве

Бабенко Л.М.1, Мошинец Е.В.2, Щербатюк Н.Н.1, Косаковская И.В.1

  1. Институт ботаники им. Н.Г. Холодного Национальной академии наук Украины, Киев
  2. Институт молекулярной биологии и генетики Национальной академии наук Украины, Киев

Проанализированы и обобщены литературные сведения об ацилгомосеринлактонах (АГЛ) — новом классе молекул-медиаторов бактериального происхождения, задействованных в дистанционной трансдукции сигналов. Обсуждено их участие в ауторецепции количественных параметров бактериальной популяции, получившей название «quorum sensing» (QS). Подчеркнуто, что явление QS и задействованные в нем компоненты причастны к регуляции физиологических процессов у растений и бактерий, среди которых формирование биопленок, синтез фитогормонов, плазмидный трансфер, продукция факторов вирулентности и т.п. Особое внимание уделено участию АГЛ в регуляции роста и развития растений, перспективам их использования в биотехнологии праймирования аграрных культур, моделированию защитных реакций и обеспечению генетической устойчивости неустойчивых видов.

Ключевые слова: acyl homoserine lactone, biofilm, autoinductor, plant priming biotechnology

Физиология растений и генетика
2016, том 48, № 6, 463-474

Полный текст и дополнительные материалы

В свободном доступе: PDF  

Цитированная литература

1. Babenko, L.M., Kosakivska, I.V., Skaterna, T.D. & Kharchenko, O.V. (2013). Plant lipoxygenase at adaptation to influence of abiotic stress factors. Bull. Kharkov. Natl. Agr. Univ., No. 2, pp. 6-19 [in Ukrainian].

2. Boubriak, O.A., Akimkina, T.V., Dmitriev, O.P., Grodzinsky, D.M. & Boubriak, I.I. (2013). Search for molecular markers for optimization presowing processing (priming) of seeds. Bull. Kharkov. Natl. Agr. Univ., No. 2, pp. 47-57 [in Ukrainian].

3. Gostev, V.V. & Sidorenko, S.V. (2010). Bacterial biofilms and infections. Zhurn. infektologii, No. 2(3), pp. 4-15 [in Russian].

4. Kolupaev, Yu.E. & Karpets, Yu.V. (2010). Formation of adaptive reactions of plants to the action of abiotic stresses. Kiev: Osnova [in Russian].

5. Krestetska, S.L. & Nesterenko, A.M. (2007). Autoinduction and signal transduction: communication systems in microbial populations. Annals of Mechnicov Institute, No. 1, pp. 4-9 [in Ukrainian].

6. Moshynets, O.V. & Kosakivska, I.V. (2010). Phytosphere ecology: plant-microbial interactions. 1. structure functional characteristic of rhizo-, endo- and phyllosphere. Bull. Kharkov. Natl. Agr. Univ., No. 2(20), pp. 19-35 [in Ukrainian].

7. Moshynets, O.V., Shpylova, S.P., Spiers, A.J. & Kosakivska, I.V. (2010). The phytosphere of Brassica napus L. as a niche for Pseudomonas fluorescens SBW25. Dopov. Nac. akad. nauk Ukr., No. 12, pp. 150-153 [in Ukrainian].

8. Oleskin, A.V., Botvinko, I.V. & Tsavkelova, E.A. (2000). Colony organization and intracellular communication in microorganisms. Microbiology, No. 3, pp. 309-327 [in Russian]. https://doi.org/10.1007/BF02756730

9. Bai, X., Todd, C.D., Desikan, R. & Yang, Y. (2012). N-3-oxo-decanoyl-L-homoserinelactone activates auxin-induced adventitious root formation via hydrogen peroxide- and nitric oxide-dependent cyclic GMP signaling in muny bean. Plant Physiol., No. 158, pp. 725-736. https://doi.org/10.1104/pp.111.185769

10. Bassler, B. (2002). Small talk. Cell-to-cell communication in bacteria. Cell, No. 109(4), pp. 421-424. https://doi.org/10.1016/S0092-8674(02)00749-3

11. Beckers, G.J., Jaskiewicz, M., Liu, Y., Underwood W.R., He S.Y., Zhang S. & Conrath, U. (2009). Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell., No. 21, pp. 944-953. https://doi.org/10.1105/tpc.108.062158

12. Beckers, G.J. & Spoel, S.H. (2006). Fine-tuning plant defense signaling: salicylate versus jasmonate. Plant Biol. (Stuttg.), No. 8, pp. 1-10.

13. Beneduzi, A., Ambrosini, A. & Passaglia, L.M. (2012). Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet. Mol. Biol., No. 35, pp. 1044-1051. https://doi.org/10.1590/S1415-47572012000600020

14. Berg, G. (2009). Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol., No. 84, pp. 11-18. https://doi.org/10.1007/s00253-009-2092-7

15. Brader, G., Compant, S., Mitter, B. Trognitz, F. & Sessitsch, A. (2014). Metabolic potential of endophytic bacteria. Curr. Opin. Biotechnol., No. 27, pp. 30-37. https://doi.org/10.1016/j.copbio.2013.09.012

16. Conrath, U., Pieterse, C. & Mauch-Mani, B. (2002). Priming in plant-pathogen interactions. Trends Plant Sci., No. 7, pp. 210-216. https://doi.org/10.1016/S1360-1385(02)02244-6

17. Farah, C., Vera, M., Morin, D., Dominique H., Jerez, C.A. & Guiliani, N. (2005). Evidence for a functional quorum-sensing type AI-1 system in the extermophilic bacterium Acidithibacillus ferrooxidans. AEM, No. 7(11), pp. 7033-7040. https://doi.org/10.1128/AEM.71.11.7033-7040.2005

18. Fukua, W., Winans, S. & Greenberg, E. (1994). Quorum sensing in bacteria: the LuxR/LuxI family of cell density responsive transcriptional regulators. J. Bacteriol., No. 176, pp. 269-275. https://doi.org/10.1128/jb.176.2.269-275.1994

19. Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol., No. 43, pp. 205-227. https://doi.org/10.1146/annurev.phyto.43.040204.135923

20. Gonzalez, J.E. & Marketon, M.M. (2003). Quorum sensing in nitrogen-fixing rhizobia. Microbiol. Mol. Biol. Rev., No. 67, pp. 574-592. https://doi.org/10.1128/MMBR.67.4.574-592.2003

21. Hernandez-Reyes, C., Schenk, S.T., Neumann, C., Kogel, K.H. & Schikora, A. (2014). N-acyl-homoserine lactone-producing bacteria protect plants against plant and human pathogens . Microbiol. Biotechnol., No. 7, pp. 580-588. https://doi.org/10.1111/1751-7915.12177

22. Iida, A., Ohnishi, Y. & Horinouchi, S. (2008). Control of acetic acid fermentation by quorum sensing via N-acylhomoserine lactones in Gluconacetobacter intermedius. J. Bacteriol., No. 190 (7), pp. 2546-2555. https://doi.org/10.1128/JB.01698-07

23. Iida, A., Ohnishi, Y. & Horinouchi, S. (2009). Identification and characterization of target genes of the GinI/GinR quorum-sensing system in Gluconacetobacter intermedius . Microbiology, No. 155, pp. 3021-3032. https://doi.org/10.1099/mic.0.028613-0

24. Jaskiewicz, M., Conrath, U. & Peterhansel, C. (2011). Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response . EMBO Rep., No. 12, pp. 50-55. https://doi.org/10.1038/embor.2010.186

25. Jung, H.W., Tschaplinski, T.J., Wang, L., Glazebrook, J. & Greenberg, J.T. (2009). Priming in systemic plant immunity. Science, No. 324, pp. 89-91. https://doi.org/10.1126/science.1170025

26. Kievit, T. & Iglewsky, B. (2000). Bacterial quorum sensing in pathogenic relationships. Infect. Immun., No. 68 (9), pp. 4839-4849. https://doi.org/10.1128/IAI.68.9.4839-4849.2000

27. Koornneef, A. & Pieterse, C.M. (2008). Cross talk in defense signaling. Plant Physiol., No. 146, pp. 839-844. https://doi.org/10.1104/pp.107.112029

28. Liu, F., Bian, Z., Jia, Z., Zhao, Q. & Song, S. (2012). The GCR1 and GPA1 participate in promotion of Arabidopsis primary root elongation induced by N-acylhomoserine lactones, the bacterial quorum-sensing signals. Mol. Plant-Microbe. Interact., No. 25, pp. 677-683. https://doi.org/10.1094/MPMI-10-11-0274

29. Losick, R. & Kaiser, D. (1997). Why and how bacteria communicate. Sci. Amer., No. 276(2), pp. 68-73. https://doi.org/10.1038/scientificamerican0297-68

30. Luna, E., Bruce, T.J., Roberts, M.R., Flors, V. & Ton, J. (2012). Next-generation systemic acquired resistance. Plant Physiol., No. 158, pp. 844-853. https://doi.org/10.1104/pp.111.187468

31. Manos, J. Arthur, J., Rose, B., Tingpej, P., Fung, C., Curtis, M., Webb, J.S., Hu, H., Kjelleberg, S., Gorrell, M.D., Bye, P. & Harbour, C. (2008). Transcriptome analyses and biofilm-forming characteristics of a clonal Pseudomonas aeruginosa from the cystic fibrosis lung. J. Med. Microbiol., No. 57, pp. 1454—1465. https://doi.org/10.1099/jmm.0.2008/005009-0

32. Mark, J., Mandel, M.S., Wollenberg, E.V. Stabb, E.V, Visick, K.L. & Ruby, E.G. (2003). A single regulatory gene is sufficient to alter bacterial host range. Nature, No. 458, pp. 215-218.

33. Marketon, M.M., Glenn, S.A., Eberhard, A. & Gonzalez, J.E. (2003). Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti. J. Bacteriol., No. 185, pp. 325-331. https://doi.org/10.1128/JB.185.1.325-331.2003

34. Mathesius, U., Mulders, S., Gao, M., Teplitski, M., Caetano-Anollés, G., Rolfe, B.G., Bauer, W.D. (2003). Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc. Natl. Acad. Sci. USA, No. 100, pp. 1444-1449. https://doi.org/10.1073/pnas.262672599

35. McLean, R.J., Pierson, L.S. & Fuqua, C. (2004). A simple screening protocol for the identification of quorum signal antagonists. J. Microbiol. Methods., No. 58, pp. 351-360. https://doi.org/10.1016/j.mimet.2004.04.016

36. Nadeem, S.M., Ahmad, M., Zahir, Z.A., Javaid, A. & Ashraf, M. (2013). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv., No. 32, pp. 429-448.

37. Natelson, S. & Natelson, E.A. (1989). Preparation of D-, DL- and L-homoserine lactone from methionine. Microchem. J., No. 40, pp. 226-232. https://doi.org/10.1016/0026-265X(89)90074-X

38. Normander, B. & Prosser, J. L. (2000). Bacterial origin and community composition in the barley phytosphere as a function of habitat and presowing conditions. Appl. Environ. Microbiol., No. 66, pp. 4372-4377. https://doi.org/10.1128/AEM.66.10.4372-4377.2000

39. Ortiz-Castro, R., Martinez-Trujillo, M. & Lopez-Bucio, J. (2008). N-acyl-L-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana. Plant Cell Environ., No. 31, pp. 1497-1509. https://doi.org/10.1111/j.1365-3040.2008.01863.x

40. Palmer, A.G., Senechal, A.C., Mukherjee, A., Ané, J.M. & Blackwell, H.E. (2014). Plant responses to bacterial N-acyl-L-homoserine lactones are dependent on enzymatic degradation to L-homoserine. ACS Chem. Biol., No. 9, pp. 1834-1845. https://doi.org/10.1021/cb500191a

41. Parsek, M., Val, D., Hanzelka, B., Cronan, J. & Greenberg, E.P. (1999). Acyl homoserine lactone quorum-sensing signal generation. Proc. Natl. Acad. Sci. USA, No. 96, pp. 4360-4365. https://doi.org/10.1073/pnas.96.8.4360

42. Rasmann, S., De Vos, M., Casteel, C.L., Tian, D., Halitschke, R., Sun, J.Y., Agrawal, A.A., Felton, G.W. & Jander, G. (2012). Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiol., No. 158, pp. 854-863. https://doi.org/10.1104/pp.111.187831

43. Ortíz-Castro, R., Contreras-Cornejo, H.A., Macías-Rodríguez, L. & López-Bucio, J. (2009). The role of microbial signals in plant growth and development. Plant Signal. Behav., No. 4 (8), pp. 701-712. https://doi.org/10.4161/psb.4.8.9047

44. Revenchon, S., Bouillant, M.L., Salmond, G. & Nasser, W. (1998). Integration of the quorum-sensing system in the regulatory networks controlling virulence factor synthesis in Erwinia chrysanthemii. Mol. Microbiol., No. 29, pp. 1407-1418. https://doi.org/10.1046/j.1365-2958.1998.01023.x

45. Salmond, G.P.C., Bycroft, B.W., Stewart, C.S.A.B. & Williams, P. (1995). The bacterial "enigma": cracking the code of cell-cell communication. Mol. Microbiol., No. 16 (4), pp. 615-624. https://doi.org/10.1111/j.1365-2958.1995.tb02424.x

46. Schenk, S. & Schikora, A. (2015). AHL-priming function via oxylipin and salicylic acid. Front. Plant Sci., No. 5, pp. 784-794. https://doi.org/10.3389/fpls.2014.00784

47. Schenk, S.T., Hernandez-Reyes, C., Samans, B., Stein, E., Neumann, C., Schikora, M., Reichelt, M., Mithofer, A., Becker, A., Kogel, K.H. & Schikora, A. (2014). N-Acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway. Plant Cell., No. 26, pp. 2708-2723. https://doi.org/10.1105/tpc.114.126763

48. Schikora, A., Schenk, S.T., Stein, E., Molitor, A., Zuccaro, A. & Kogel, K.H. (2011). N-Acyl-homoserine lactone confers resistance towards biotrophic and hemibiotrophic pathogens via altered activation of AtMPK. Plant Physiol., No. 57, pp. 1407-1418. https://doi.org/10.1104/pp.111.180604

49. Schuhegger, R., Ihring, A., Gantner, S., Bahnweg, G., Knappe, C., Vogg, G., Hutzler, P., Schmid, M., Van Breusegem, F., Eberl, L., Hartmann, A. & Langebartels, C. (2006). Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ., No. 29, pp. 909-918. https://doi.org/10.1111/j.1365-3040.2005.01471.x

50. Slaughter, A., Daniel, X., Flors, V., Luna, E., Hohn, B. & Mauch-Mani, B. (2012). Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol., No. 158, pp. 835-843. https://doi.org/10.1104/pp.111.191593

51. Spoel, S.H. & Dong, X. (2008). Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe, No. 3, pp. 348-351. https://doi.org/10.1016/j.chom.2008.05.009

52. Teplitski, M., Robinson, J.B. & Bauer, W.D. (2000). Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol. Plant-Microbe Interact., No. 13, pp. 637-648. https://doi.org/10.1094/MPMI.2000.13.6.637

53. Ton, J., Jakab, G., Toquin, V., Flors, V., Iavicoli, A., Maeder, M.N., Métraux, J.P. & Mauch-Mani, B. (2005). Dissecting the b-aminobutyric acid-induced priming phenomenon in Arabidopsis. Plant Cell., No. 17, pp. 987-999. https://doi.org/10.1105/tpc.104.029728

54. Tsai, C.H., Singh, P., Chen, C.W., Thomas, J., Weber, J., Mauch-Mani, B. & Zimmerli, L. (2011). Priming for enhanced defense responses by specific inhibition of the Arabidopsis response to coronatine. Plant J., No. 65, pp. 469-479. https://doi.org/10.1111/j.1365-313X.2010.04436.x

55. van Elsas, J.D., Tumer, S. & Bailey, M.J. (2003). Horizontal gene transfer in the phytosphere. New Phytol., No. 157, pp. 525-537. https://doi.org/10.1046/j.1469-8137.2003.00697.x

56. van Peer, P., Punte, H.L. M., De Weger, L. A. & Schippers, B. (1990). Characterization of root surface and endorhizosphere Pseudomonas in relation to their colonization of roots. Appl. Environ. Microbiol., No. 56, pp. 2462-2470.

57. van Wees, S.C., De Swart, E.A., van Pelt, J.A., van Loon, L.C. & Pieterse, C.M.J. (2000). Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA, No. 97, pp. 8711-8716. https://doi.org/10.1073/pnas.130425197

58. von Rad, U., Klein, I., Dobrev, P.I., Kottova, J., Zazimalova, E., Fekete, A., Hartmann, A, Schmitt-Kopplin, P. & Durner, J. (2009). Response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta, No. 229, pp. 73-85.

59. Whitehead, N., Barnard, A., Slater, H., Simpson, N.J. & Salmond, G.P. (2001). Quorum sensing in Gram-negative bacteria. FEMS Microbiol. Rev., No. 25, pp. 365-404. https://doi.org/10.1111/j.1574-6976.2001.tb00583.x

60. Zarkani, A.A., Stein, E., Rohrich, C.R., Schikora, M., Evguenieva-Hackenberg, E., Degenkolb, T., Vilcinskas, A., Klug, G., Kogel, K.H. & Schikora, A. (2013). Homoserine lactones influence the reaction of plants to rhizobia. Int. J. Mol. Sci., No. 4, pp. 17122-17146. https://doi.org/10.3390/ijms140817122