Fiziol. rast. genet. 2022, vol. 54, no. 6, 484-497, doi: https://doi.org/10.15407/frg2022.06.484

Lpa-mutations and hull-less barley (Hordeum vulgare L.) biofortification in grain mineral phosphorus

Rybalka О.I.1,2, Morgun B.V.2,3, Chervo­nis M.V.1, Polyshchuk S.S.1, Morgun V.V.2, Toporash I.G.1, Trojanyvska A.V.1

  1. Plant Breeding and Genetics Institute-National Centre of Seed and Cultivars Investigation, National Academy of Agricultural Sciences of Ukraine 3 Ovidiopolska Road, Odesa, 65036, Ukraine
  2. Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine
  3. Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine 148 Academic Zabolotny St., Kyiv, 03680, Ukraine

Phosphorus is a key mineral for a human as well as an animal body. Approximately 70-80 % of total seed phosphorus content of cereals and legumes are stored in a bounded form of phytic acid (mio-inositol-1,2,3,4,5,6-hexa-kisphosphate) and therefore is not available for human and non-ruminant animals’ nutrition. Inaccessible to digestion organic phosphorus in form of phytates excreted from the body of non-ruminant animals and poultry with feces creates an ecological problem displayed as drinking water pollution (eutrophication of waterways). Development of low-phytate hull-less barley varieties on the base of lpa-mutations allows to enhance substantially the grain phosphorus uptake (bioavailability) by animals and humans thereby decreasing the harmful ecological load with organic phosphates. Series of original lpa-mutations was used in a special breeding program aimed on development of low-phytate hull-less barley with grain enhanced mineral phosphorus in combination with black seed pericarp (from Abyssinian 1105 collection strain) as a marker of increased anthocyanin pigments content possessing with elevated grain antioxidant activity. As a lpa-mutations recipient spring hull-less barley commercial variety Achilles was used. On the base of crosses several segregating populations were developed. The number of advanced breeding hull-less barley lines with elevated grain mineral phosphorus combined with black pericarp were isolated. Laboratory protocol needed for detection of lpa-mutations in breeding populations was used with some modifications and improvements required for efficient selection of the target lpa-genotypes. Laboratory procedure sensitivity allows reliable detection of lpa-mutations in breeding population using minimal sample size as single individual seeds or parts of them.

Keywords: hull-less barley, phytates, mineral phosphorus, lpa-mutations, biofortification

Fiziol. rast. genet.
2022, vol. 54, no. 6, 484-497

Full text and supplemented materials

Free full text: PDF  

References

1. Key, M.N., Zwilling, Ch.E., Talukdar, T. & Barbey, A.K. (2019). Essential amino acids, vitamins, and minerals moderate the relationship between the right frontal pole and measures of memory. Mol. Nutr. Food. Res., 53, No. 15, p. 1801048. https://doi.org/10.1002/mnfr.201801048

2. Berdanier, C., Dwyer, J. & Herber, D. (2013). Handbook of nutrition and food (3rd ed.). CRC Press. https://doi.org/10.1201/b15294

3. Harland, B. & Morris, E. (1995). Phytate: a good of bad food component? Nutr. Res., 15, No. 5, pp. 733-754. https://doi.org/10.1016/0271-5317(95)00040-P

4. Horii, S., Matsuno, T., Tagomor, J., Mukai, M., Adhikari, D. & Kubo, M. (2013). Isolation and identification of phytate-degrading bacteria and their contribution to phytate mineralization in soil. J. Genet. Appl. Microbiol., 59, No. 5, pp. 353-360. https://doi.org/10.2323/jgam.59.353

5. Li, Y., Ledoux, D., Veum, T., Raboy, V., Zyla, K. & Wikiera, A. (2001). Bioavailability of phosphorus in low phytic acid barley. J. Appl. Poultry. Res., 10, No. 1, pp. 86-91. https://doi.org/10.1093/japr/10.1.86

6. Dorsch, J., Cook, A., Young, K., Anderson, J.M., Bauman, A.T. & Volkmann, C.S. (2003). Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes. Phytochemistry, 62, No. 5, pp. 691-706. https://doi.org/10.1016/S0031-9422(02)00610-6

7. Larson, S., Young, K., Cook, A., Blake, T.K. & Raboy, V. (1998). Linkage mapping of two mutations that reduce phytic acid content of barley grain. Theor. Appl. Genet., 97, pp. 141-146. https://doi.org/10.1007/s001220050878

8. Oliver, R., Yang, C., Hu, G., Raboy, V. & Zhang, M. (2009). Identification of PCR-based DNA markers flanking three low phytic acid mutant loci in barley. J. Plant Breed. Crop. Sci., 1, No. 4, pp. 87-93. http://www.academicjournals.org/jpbcs

9. Kim, S., Andaya, C. & Goyal, S. (2008). The rice OsLpa1 gene encodes a novel protein involved in phytic acid metabolism. Theor. Appl. Genet., 117, No. 5, pp. 769-779. https://doi.org/10.1007/s00122-008-0818-z

10. Larson, S., Rutger, J., Young, K. & Raboy, V. (2000). Isolation and genetic mapping of a non-lethal rice (Oryza sativa L.) low phytic acid 1 mutation. Crop Sci., 40, No. 5, pp. 1397-1405. https://doi.org/10.2135/cropsci2000.4051397x

11. Liu, Q., Xu, X., Ren, X., Fu, H., Wu, D. & Shu, Q. (2007). Generation and characterization of low phytic acid germplasm in rice (Oryza sativa L.). Theor. Appl. Genet., 114, pp. 803-814. https://doi.org/10.1007/s00122-006-0478-9

12. Ren, X., Liu, Q., Fu, H., Wu, D. & Shu, Q. (2007). Density alteration of nutrient elements in rice grains of a low phytate mutant. Food Chem., 102, No. 4, pp. 1400-1406. https://doi.org/10.1016/j.foodchem.2006.05.065

13. Zhao, H., Liu, Q., Fu, H., Xu, X., Wu, D. & Shu, Q. (2008). Effect of non-lethal low phytic acid mutations on grain yield and seed viability in rice. Field Crops Res., 108, No. 3, pp. 206-211. https://doi.org/10.1016/j.fcr.2008.05.006

14. Zhao, H., Liu, Q., Ren, X., Wu, D. & Shu, Q. (2008). Gene identification and allele-specific marker development for two allelic low phytic acid mutations in rice (Oryza sativa L.). Mol. Breed., 22, pp. 603-612. https://doi.org/10.1007/s11032-008-9202-6

15. Guttieri, M., Bowen, D., Dorsch, J., Raboy, V. & Souza, E. (2003). Identification and characterization of a low phytic acid wheat. Crop Sci., 44, No. 2, pp. 418-424. https://doi.org/10.2135/cropsci2004.4180

16. Pilu, R., Panzeri, D., Gavazzi, G., Rasmussen, S.K., Consonni, G. & Nielsen, E. (2003). Phenotypic, genetic and molecular characterization of a maize low phytic acid mutant (lpa241). Theor. Appl. Genet., 107, pp. 980-987. https://doi.org/10.1007/s00122-003-1316-y

17. Raboy, V., Gerbasi, P., Young, K., Stoneberg, S.D., Pickett, S.C., Bauman, A.T., Murthy, P.P.N., Sheridan, W.F. & Ertl, D.S. (2000). Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. Plant Physiol., 124, No. 1, pp. 355-368. https://doi.org/10.1104/pp.124.1.355

18. Shi, J., Wang, H., Wu, Y., Hazebroek, S., Meeley, R.B. & Ertl, D.S. (2003). The maize low-phytic acid mutant 1pa2 is caused by mutation in an inositol phosphate kinase gene. Plant Physiol., 131, No. 2, pp. 507-515. https://doi.org/10.1104/pp.014258

19. Shi, J., Wang, H., Hazebroek, J., Ertl, D.S. & Halp, T. (2005). The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds. Plant J., 42, No. 5, pp. 708-719. https://doi.org/10.1111/j.1365-313X.2005.02412.x

20. Shi, J., Wang, H., Schellin, K., Li, B., Faller, M., Stoop, J.M., Meeley, R.B., Ertl, D.S., Ranch, J.P. & Glassman, K. (2007). Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat. Biotechnol., 25, pp. 930-937. https://doi.org/10.1038/nbt1322

21. Hitz, W., Carlson, T., Kerr, P. & Sebastian, S.A. (2002). Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds. Plant Physiol., 128, No. 2, pp. 650-660. https://doi.org/10.1104/pp.010585

22. Wilcox, J., Premachandra, G., Young, K. & Raboy, V. (2000). Isolation of high seed inorganic P, low-phytate soybean mutants. Crop Sci., 40, No. 6, pp. 1601-1605. https://doi.org/10.2135/cropsci2000.4061601x

23. Yuan, F., Zhao, H., Ren, X., Zhu, S., Fu, X. & Shu, Q. (2007). Generation and characterization of two novel low phytate mutations in soybean (Glycine max L. Merr.). Theor. Appl. Genet., 115, pp. 945-957. https://doi.org/10.1007/s00122-007-0621-2

24. Campion, B., Sparvoli, F., Doria, E. & Nielsen, E. (2009). Isolation and characterization of an lpa (low phytic acid) mutant in common bean (Phaseolus vulgaris L.). Theor. Appl. Genet., 118, pp. 1211-1221. https://doi.org/10.1007/s00122-009-0975-8

25. Raboy, V. (2002). Progress in breeding low phytate crops. J. Nutr., 132, No. 3, pp. 503-505. https://doi.org/10.1093/jn/132.3.503S

26. Raboy, V., Young, K., Dorsch, J. & Cook, A. (2001). Genetics and breeding of seed phosphorus and phytic acid. J. Plant Physiol., 158, No. 4, pp. 489-497. https://doi.org/10.1078/0176-1617-00361

27. Ramsay, L., Macaulay, M., Ivanissevich, S., MacLean, K., Cardle,L., Fuller, J., Edwards, K., Tuvesson, S., Morgante, M., Massari, A., Maestri, E., Marmiroli, N., Sjakste, T., Ganal, M., Powell, W. & Waugh, R. (2000). A simple sequence repeat-based linkage map of barley. Genetics, 156, pp. 1997-2005. https://doi.org/10.1093/genetics/156.4.1997

28. Chen, P., Toribara, T. & Warner, H. (1956). Microdetermination of phosphorus. Anal. Biochem., 28, No. 11, pp. 1756-1758. https://doi.org/10.1021/ac60119a033

29. Abdel-Aal, E.-S. & Hucl, P (1999). A rapid method for quantifying total anthocyanins in blue aleurone and purple pericarp wheats. Cereal Chem., 76, pp. 350-354. https://doi.org/10.1094/CCHEM.1999.76.3.350

30. Abdel-Aal, E.-S. & Hucl, P (2003). Composition and stability of anthocyanins in blue-grained wheat. J. Agric. Food Chem., 51, No. 8, pp. 2174-2180. https://doi.org/10.1021/jf021043x

31. Siebenhandl, S., Grausgruber, H., Pellegrini, N., Fogliano, V. & Pernice, R. (2007). Phytochemical profile of main antioxidants in different fractions of purple and blue wheat, and black barley. J. Agric. Food Chem., 55, No. 21, pp. 8541-8547. https://doi.org/10.1021/jf072021j

32. Glagoleva, A., Shoeva, O. & Khlestkina, E. (2020). Melanin pigment in plants. Front. Plant Sci., 11, p. 770. https://doi.org/10.3389/fpls.2020.00770

33. Raboy, V., Peterson, K., Jackson, C., Marshall, J.M., Hu, G., Saneoka, H. & Bregitzer, P. (2015). A substantial fraction of barley (Hordeum vulgare L.) low phytic acid mutations have little or no effect on yield across diverse production environments. Plants, 4, No. 2, pp. 225-239. https://doi.org/10.3390/plants4020225

34. Harvey, B. & Rossnagel, B. (1984). Harrington barley. Can. J. Plant Sci., 64, No. 1, pp. 193-194. https://doi.org/10.4141/cjps84-024

35. Bregitzer, P. & Raboy, V (2007). Registration of four low-phytate/wild type pairs of barley germplasms. J. Plant Reg., 1, No. 2, pp. 139-140. https://doi.org/10.3198/jpr2007.02.0070crg

36. Bregitzer, P., Raboy, V., Obert, D., Windes, S. & Whitmore, J.C. (2008). Registration of 'Clearwater' low-phytate hull-less spring barley. J. Plant Reg., 2, No. 1, pp. 1-4. https://doi.org/10.3198/jpr2007.07.0388crc

37. Rossnagel, B., Zatorski, T., Arganosa, G. & Beattlie, A.D. (2008). Registration of «CDC Lophy» barley. J. Plant Reg., 2, No. 3, pp. 169-173. https://doi.org/10.3198/jpr2008.02.0095crc

38. Bregitzer, Ph., Hu, G., Marshall, J. & Raboy, V. (2017). Registration of «Sawtooth» low-phytate, hulless, spring barley. J. Plant Reg., 11, No. 2, pp. 81-84. https://doi.org/10.3198/jpr2016.09.0049crc

39. Shaveta, H., Kaur, H. & Kaur, S. (2019). Hulless barley: a new era of research for food purposes. J. Cereal Res., 11, No. 2, pp. 114-124. https://doi.org/10.25174/2249-4065/2019/83719