en   ru   uk  
 
 
Fiziol. rast. genet. 2017, vol. 49, no. 1, 3-14, doi: https://doi.org/10.15407/frg2017.01.003

Plant resistance to auxinic herbicides related to the peculiarities of mechanism of their phytotoxic action

Guralchuk Zh.Z., Morderer Ye.Yu.

  • Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., 03022, Kyiv, Ukraine

The article is devoted to coverage of issues related to the development and spread of resistance of plants to auxinic herbicides. The latest advances in uncovering the mechanisms of action of natural and synthetic auxins and possible ways of plant resistance to auxinic herbicides are discussed.

Keywords: auxinic herbicides, resistance, sites of action

Fiziol. rast. genet.
2017, vol. 49, no. 1, 3-14

Full text and suplimented materials

Free full text: PDF  

References

1. Anderson, R.N. & Gronwald, J.W. (1987). Noncytoplasmic inheritance of triazine tolerance in velvetleaf (Abutilon theophrasti). Weed Sci., 35, pp. 496-498.

2. Badescu, G.O. & Napier, R.M. (2006). Receptors for auxin: will it all end in TIRs? Trends Plant Sci., 11, pp. 217-223. https://doi.org/10.1016/j.tplants.2006.03.001

3. Calderon-Villalobos, L.I.A., Lee, S.C., Oliveira de, C., Ivetac, A., Brandt, W., Armitage, L., Sheard, L. B., Tan, Xu, Parry, G., Mao, H., Zheng, N., Napier, R., Kepinski, S. & Estelle, M. (2012). A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nature Chem. Biol., 8, No. 5, pp. 477-485. https://doi.org/10.1038/nchembio.926

4. Chapman, E.J. & Estelle, M. (2009). Mechanism of auxin-regulated gene expression in plants. Annu. Rev. Genet., 43, pp. 265-285. https://doi.org/10.1146/annurev-genet-102108-134148

5. Cobb, A.H. & Reade, J.P.H. (2010). Herbicides and Plant Physiology. 2nd ed. Oxford, UK: Wiley-Blackwell. https://doi.org/10.1002/9781444327793

6. Delye, C., Jasieniuk, M. & Le Corre, V. (2013). Deciphering the evolution of herbicide resistance in weeds. Thends Genet., 29, pp. 649-658. https://doi.org/10.1016/j.tig.2013.06.001

7. Di Meo, N.L. (2012).Understanding the Inheritance and Mechanism of Auxinic Herbicide Resistance in Wild Radish (Raphanus raphanistrum L.) (Unpublished master thesis). University of Guelph: Ontario.

8. Fode, B., Siemsen, T., Thurow, C., Weigel, R. & Gatz, C. (2008). The Arabidopsis GRAS protein SCL14 interacts with class II TGA transcription factors and is essential for the activation of stress-inducible promoters. Plant Cell, 20, pp. 3122-3135. https://doi.org/10.1105/tpc.108.058974

9. Frescas, D. & Pagano, M. (2008). Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: Tipping the scales of cancer. Nat. Rev. Cancer, 8, pp. 438-449. https://doi.org/10.1038/nrc2396

10. Goggin, D.E., Cawthray, G.R. & Powles, S.B. (2016). 2,4-D resistance in wild radish: reduced herbicide translocation via inhibition of cellular transport. J. Exp. Bot., 67 (11), pp. 3223-3235. https://doi.org/10.1093/jxb/erw120

11. Grey, W.M., del Pozo, J.C., Walker, L., Hobbie, L., Risseeuw, E., Banks, T., Crosby, W.L., Yang, M., Ma, H. & Estelle, M. (1999). Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev., 13, pp. 1678-1691. https://doi.org/10.1101/gad.13.13.1678

12. Grossmann, K. (2010). Auxin herbicides: current status of mechanism and mode of action. Pest. Manag. Sci., 66, pp. 113-120.

13. Grossmann, K. (2003). Mediation of herbicide effects by hormone interactions. J. Plant Growth Regul., 22, pp. 109-122. https://doi.org/10.1007/s00344-003-0020-0

14. Grossmann, K., Rosenthal, C. & Kwiatkowski, J. (2004). Increases in jasmonic acid caused by indole-3-acetic acid and auxin herbicides in cleavers (Galium aparine). J. Plant Physiol., 161, pp. 809-814. https://doi.org/10.1016/j.jplph.2003.12.002

15. Guilfoyle, T. (2007). Sticking with auxin. Nature, 446, No. 5, pp. 621-622. https://doi.org/10.1038/446621a

16. Hall, J.C., Alam, S.M.M., Murr, D.P. (1993). Ethylene biosynthesis following foliar application of picloram to biotypes of wild mustard (Sinapis arvensis L.) susceptible or resistant to auxinic herbicides. Pest. Biochem. Physiol., 47, pp. 36-43. https://doi.org/10.1006/pest.1993.1060

17. Heap, I.M. & Morrison, I.N. (1992). Resistance to auxin-type herbicides in wild mustard (Sinapis arvensis L.) populations in western Canada. Annual Meeting of Weed Science Society of Amer., Abstract 32, pp. 164.

18. Heap, I. (2016). The International Survey of Herbicide Resistant Weeds. Available at www.weedscience.org. Accessed 03/30.2016.

19. Hershko, A. (2005).The ubiquitin system for protein degradation and some of its roles in the control of the cell-division cycle (Nobel lecture). Angew. Chem. Int. Ed. Engl., 44, pp. 5932-5943. https://doi.org/10.1002/anie.200501724

20. Ito, H. & Gray, W.M. (2006). A gain-of-function mutation in the Arabidopsis pleiotropic drug resistance transporter PDR9 confers resistance to auxinic herbicides. Plant Physiol., 142, pp. 63-74. https://doi.org/10.1104/pp.106.084533

21. Jasieniuk, M., Brule-Babel, A.L. & Morrison, I.N. (1994). Inheritance of trifluralin resistance in green foxtail (Setaria viridis). Weed Sci., 42, pp. 123-127.

22. Jasieniuk, M., Brule-Babel, A.L. & Morrison, I.N. (1996). The evolution and genetics of herbicide resistance in weeds. Weed Sci., 44, pp. 176-193.

23. Jasieniuk, M., Morrison, I.N. & Brule-Babel, A.L. (1995). Inheritance of dicamba resistance in wild mustard (Brassica kaber). Weed Sci., 43, pp. 192-195.

24. Jones, A.M. & Sussman, M.R. (2009). A binding resolution. Plant Physiol., 150, pp. 3-5. https://doi.org/10.1104/pp.109.136606

25. Jugulam, M., McLean, M.D. & Hall, J.C. (2005). Inheritance of picloram and 2,4-D resistance in wild mustard (Brassica kaber). Weed Sci., 53, pp. 417-423. https://doi.org/10.1614/WS-04-149R

26. Jurado, S., Abraham, Z., Manzano, C., Lopez-Torrejon, G., Pacios, L.F. & Del Pozo, J.C. (2010). The Arabidopsis cell cycle F-box protein SKP2A binds to auxin. Plant Cell, 22, pp. 3891-3904. doi: www.plantcell.org/cgi/doi/10.1105/tpc.110.078972.

27. Jurado, S., Diaz-Trivino, S., Abraham, Z., Manzano, C., Gutierrez, C. & del Pozo, J.C. (2008). SKP2A, an F-box protein that regulates cell division, is degraded via the ubiquitin pathway. Plant J., 53, pp. 828-841. https://doi.org/10.1111/j.1365-313X.2007.03378.x

28. Kepinski, S. & Leyser, O. (2004). Auxin-induced SCFTIR1-Aux/IAA interaction involves stable modification of the SCFTIR1 complex. Proc. Natl. Acad. Sci. USA, 101, pp. 12381-12386. https://doi.org/10.1073/pnas.0402868101

29. Kepinski, S. & Leyser, O. (2005). The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature, 435, pp. 446-451. https://doi.org/10.1038/nature03542

30. Kern, A.J., Myers, T.M., Jasieniuk, M., Murray, B. G., Maxwell, B. D. & Dyer, W. E. (2002). Two recessive gene inheritance for triallate resistance in Avena fatua L. J. Hered., 93, pp. 48-50. https://doi.org/10.1093/jhered/93.1.48

31. Ludwig-Muller, J. (2011). Auxin conjugates: their role for plant development and in the evolution of land plants. J. Exp. Bot., 62, pp. 1757-1773. https://doi.org/10.1093/jxb/erq412

32. Marchant, A., Kargul, J., May, S.T., Muller, Ph., Delbarre, A., Perrot-Rechenmann, C. & Bennett, M.J. (1999). AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J., 18, pp. 2066-2073. https://doi.org/10.1093/emboj/18.8.2066

33. Mithila, J. & Godar, A. S. (2013). Understanding genetics of herbicide resistance in weeds: Implications for weed management. Adv. Crop Sci. Tech. 1, N 4, pp. 115. https://doi.org/10.4172/2329-8863.1000115

34. Mithila, J. & Hall, J.C. (2005). Comparison of ABP1 over-expressing Arabidopsis and under-expressing tobacco with an auxinic herbicide-resistant wild mustard (Brassica kaber) biotype. Plant Sci., 169, pp. 21-28. https://doi.org/10.1016/j.plantsci.2005.02.010

35. Mithila, J., Hall, J.C., Johnson, W.G., Kelley, K.B. & Riechers, D.E. (2011). Evolution of resistance to auxinic herbicides: historical perspectives, mechanisms of resistance, and implications for broadleaf weed management in agronomic crops. Weed Sci., 59, pp. 445-457. https://doi.org/10.1614/WS-D-11-00062.1

36. Mithila, J., McLean, M.D., Chen, S. & Hall, J.C. (2012). Development of near-isogenic lines and identification of markers linked to auxinic herbicide in wild murtard (Sinapis arvensis). Pest. Manag. Sci., 68, pp. 548-556. https://doi.org/10.1002/ps.2289

37. Nakayama, K.I. & Nakayama, K. (2006). Ubiquitin ligases: Cell-cycle control and cancer. Natl. Rev. Cancer, 6, pp. 369-381. https://doi.org/10.1038/nrc1881

38. Neve, P. & Powles, S.B. (2005). High survival frequencies at low herbicide use rates in populations of Lolium rigidum result in rapid evolution of herbicide resistance. Heredity, 95, pp. 485-492. https://doi.org/10.1038/sj.hdy.6800751

39. Overbeec van, J. (1964). Survey of mechanisms of herbicide action. In The Physiology and Biochemistry of Herbicides. J. Audus (Ed.). New York: Academic Press. P. 387-399.

40. Pazmino, D.M., Rodriguez-Serrano, M., Sanz, M., Romero-Puertas, M.C. & Sandalio, L.M.(2013). Regulation of epinasty induced by 2,4-dichlorophenoxyacetic acid in pea and Arabidopsis plants. Plant Biol., 16, pp. 809-818. https://doi.org/10.1111/plb.12128

41. Pazmino, D.M., Romero-Puertas, M.C. & Sandalio, L.M. (2012). Insights into the toxicity mechanism of and cell response to the herbicide 2,4-D in plants. Plant Signal. Behav., 7, No. 3., pp. 425-427. https://doi.org/10.4161/psb.19124

42. Peniuk, M.G., Romano, M.L. & Hall, J.C. (1993). Physiological investigations into the resistance of wild mustard (Sinapis arvensis L.) biotype to auxinic herbicide. Weed Res., 33, pp. 431-440. https://doi.org/10.1111/j.1365-3180.1993.tb01959.x

43. del Pozo, J.C., Boniotti, M.B. & Gutierrez, C. (2002). Arabidopsis E2Fc functions in cell division and is degraded by the ubiquitin-SCF (AtSKP2) pathway in response to light. Plant Cell, 14, pp. 3057-3071. https://doi.org/10.1105/tpc.006791

44. del Pozo, J.C., Diaz-Trivino, S., Cisneros, N. & Gutierrez, C. (2006). The balance between cell division and endoreplication depends on E2FC-DPB, transcription factors regulated by the ubiquitin-SCFSKP2A pathway in Arabidopsis. Plant Cell, 18, pp. 2224-2235. https://doi.org/10.1105/tpc.105.039651

45. Preston, C., Belles, D.S., Westra, Ph.H., Nissen, S.J. & Ward, S.M. (2009). Inheritance of resistance to the auxinic herbicide dicamba in kochia (Kochia scoparia). Weed Sci., 57, pp. 43-47. https://doi.org/10.1614/WS-08-098.1. https://doi.org/10.1614/WS-08-098.1

46. Preston, C. (2003). Inheritance and linkage of metabolism-based herbicide cross-resistance in rigid ryegrass (Lolium rigidum). Weed Sci., 51, pp. 4-12. https://doi.org/10.1614/0043-1745(2003)051[0004:IALOMB]2.0.CO;2

47. Preston, C. & Mallory-Smith, C.A. (2001). Herbicide resistance in world grains: biochemical mechanisms, inheritance, and molecular genetics of herbicide resistance in weeds. CRC Press, Inc, Boca Raton, Florida, USA.

48. Raghavan, C., Ong, E.K., Dalling, M.J. & Stevenson, T.W. (2006). Regulation of genes associated with auxin, ethylene and ABA pathways by 2,4-dichlorophenoxyacetic acid in Arabidopsis. Funct. Integr. Genomics, 6, pp. 60-70. https://doi.org/10.1007/s10142-005-0012-1

49. Ren, H., Santner, A., del Pozo, J.C., Murray, J.A. & Estelle, M. (2008). Degradation of the cyclin-dependent kinase inhibitor KRP1 is regulated by two different ubiquitin E3 ligases. Plant J., 53, pp. 705-716. https://doi.org/10.1111/j.1365-313X.2007.03370.x

50. Riar, D.S., Burke, I.C., Yenish, J.P., Bell, J. & Gill, K. (2011). Inheritance and physiological basis for 2,4-D resistance in prickly lettuce (Lactuca serriola L.). J. Agric. Food Chem., 59, No. 17, pp. 9417-9423. https://doi.org/10.1021/jf2019616

51. Rodriguez-Serrano, M., Pazmino, D.M., Sparkes, I., Rochetti, A., Hawes, C., Romero-Puertas, M.C. & Sandalio, L.M. (2014). 2,4-Dichlorophenoxyacetic acid promotes S-nitrosylation and oxidation of actin affecting cytoskeleton and peroxisomal dynamics. J. Exp. Bot., 65, pp. 4783-4793. https://doi.org/10.1093/jxb/eru237

52. Sabba, R.P., Ray, I.M., Lownds, N. & Sterling, T.M. (2003). Inheritance of resistance to clopyralid and picloram in yellow starthistle (Centaurea solstitialis) is controlled by a single nuclear recessive gene. J. Hered., 94, pp. 523-527. https://doi.org/10.1093/jhered/esg101

53. Sauer, M. & Kleine-Vehn, J. (2011). Auxin binding protein1: the outsider. Plant Cell, 23, pp. 2033-2043. https://doi.org/10.1105/tpc.111.087064

54. Sauer, M., Robert, S. & Kleine-Vehn, J. (2013.) Auxin: simply complicated. J. Exp. Bot., 64, pp. 2565-2577. https://doi.org/10.1093/jxb/ert139

55. Song, Y. (2014). Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide. J. Integr. Plant Biol., 56, No. 2, pp. 106-113. https://doi.org/10.1111/jipb.12131

56. Song, Y. & Xu, Z.F. (2013). Ectopic overexpression of an auxin/indole-3-acetic acid (Aux/IAA) gene OsIAA4 in rice induces morphological changes and reduces responsiveness to auxin. Int. J. Mol. Sci., 14, pp. 13645-13656. https://doi.org/10.3390/ijms140713645

57. Song, Y., You, J. & Xiong, L. (2009). Characterization of OsIAA1 gene, a member of rice Aux/IAA family involved in auxin and brassinosteroid hormone responses and plant morphogenesis. Plant Mol. Biol., 70, pp. 297-309. https://doi.org/10.1007/s11103-009-9474-1

58. Sterling, T. M. & Hall, J. C. (1997). Mechanism of action of natural auxins and the auxinic herbicides. In Herbicide Activity: Toxicology, Biochemistry and Molecular Biology. R. M. Roe, J. D. Burton, R. J. Kuhr (Eds.) Amsterdam, the Netherlands: IOS Press. P. 111-141.

59. Tan, X., Calderon-Villalobos, L.I., Sharon, M., Zheng, Ch., Robinson, C.V., Estelle, M.,& Zheng, N. (2007). Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature, 446, pp. 640-645. https://doi.org/10.1038/nature05731

60. Timmons, F.L. (1970). A history of weed control in the United States and Canada. Weed Sci., 18, pp. 294-307.

61. Tromas, A., Paponov, I. & Perrot-Rechenmann, C. (2010). Auxin binding protein 1: Functional and evolutionary aspects. Trends Plant Sci., 15, pp. 436-446. https://doi.org/10.1016/j.tplants.2010.05.001

62. Van Eerd, L.L., McLean, M.D., Stephenson, G.R. & Hall, J.C. (2004). Resistance to quinclorac and ALS-inhibitor herbicides in Galium spurium is conferred by two distinct genes. Weed Res., 44, pp. 355-365. https://doi.org/10.1111/j.1365-3180.2004.00408.x

63. Van Eerd, L.L., Stephenson, G.R., Kwiatkowski, J., Grossmann, K., Hall, J.C. (2005). Physiological and biochemical characterization of quinclorac and resistance in a false cleavers (Galium spurium) biotype. J. Agric. Food Chem., 53, pp. 1144-1151. https://doi.org/10.1021/jf048627e

64. Verkest, A., Manes, C.L.O., Vercruysse, S., Maes, S., Van Der Schueren, E., Beeckman, T., Genschik, P., Kuiper, M., Inzé, D. & De Veylder, L. (2005). The cyclin-dependent kinase inhibitor KRP2 controls the onset of the endoreduplication cycle during arabidopsis leaf development through inhibition of mitotic CDKA; 1 kinase complexes. Plant Cell, 17, pp. 1723-1736. https://doi.org/10.1105/tpc.105.032383

65. Walsh, T.A., Neal, R., Merlo, A.O., Honma, M., Hicks, G.R., Wolff, K., Matsumura, W. & Davies, J.P. (2006). Mutations in an auxin receptor homolog AFB5 and in SGT1b confer resistance to synthetic picolinate auxins and not to 2,4-dichlorophenoxyacetic acid or indole-3-acetic acid in Arabidopsis. Plant Physiol., 142, pp. 542-552. https://doi.org/10.1104/pp.106.085969

66. Webb, S.R. & Hall, J.C. (1995). Auxinic herbicide-resistant and herbicide-susceptible wild mustard (Sinapis arvensis L.) biotypes: effect of herbicides on seedling growth and auxin-binding activity. Pest. Biochem. Physiol., 52, pp. 137-148. https://doi.org/10.1006/pest.1995.1038

67. Weinberg, T., Stephenson, G.R., McLean, M.D. & Hall, J.C. (2006). MCPA (4-chloro-2-ethylphenoxyacetate) resistance in hemp-nettle (Galeopsis tetrahit L.). J. Agr. Food Chem., 54, pp. 9126-9134. https://doi.org/10.1021/jf061803u

68. Yu, Q. & Powles, S. (2014). Metabolism-based herbicide resistance and cross-resistance in crop weeds: a threat to herbicide sustainability and global crop production. Plant Physiol., 166, No. 3, pp. 1106-1118. https://doi.org/10.1104/pp.114.242750